
The model of experimental cutaneous 
leishmaniosis

Protozoan parasites of the genus
Leishmania are transmitted by sandflies and
exist in two forms. Flagellated, promastigote
forms live in the gut of the sandfly. When
the sandfly bites a host, these forms are
transmitted into the skin, where they enter
macrophages. Here, they transform into an
amastigote form that loses the flagellum and
multiplies inside the macrophage. After dis-
ruption of the macrophage, more macro-
phages become infected. Cell types other
than macrophages, e.g. epidermal
Langerhans cells [1] and fibroblasts (C.
Bogdan, unpublished observation), may also
become infected. Depending on the species
of Leishmania, the developing disease is
either harmless and self-healing, e.g. during
infections with L. major, or systemic and
fatal (e.g. L. donovani). All Leishmania species
infect various animals (e.g. rodents and
dogs) in addition to humans.

The infection of mice with L. major has
been used as a model to analyze the para-
meters of the immune system that are

responsible for cure or death of the infected
host. Depending on the inbred mouse strain
used, this infection is either fatal (e.g. in sus-
ceptible BALB/c mice) or self healing (e.g.
in resistant C57BL/6). Several immunomod-
ulatory treatments, like sublethal irradiation
or treatment with anti-CD4 [2, 3], have been
shown to change the phenotype of BALB/c
mice towards resistance; all of these treat-
ments have to be initiated before or within
the first few days after infection in order to
be effective. The reasons for the different
disease outcome in resistant and susceptible
mice has been a matter of intensive studies.
In the course of these investigations, murine
cutaneous leishmaniasis became the first
model to clearly demonstrate the signifi-
cance of the Th1/Th2 concept in vivo .
Herein, we will summarize the key results of
these studies.

Because the macrophage is the principle
host cell for L. major, any attack of the
immune system to kill the parasite has to
involve this cell. The decisive question there-
fore is, how to activate the macrophage to
use its lethal machinery to kill Leishmania . It
is now clear that nitric oxide produced by
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the inducible NO synthase (iNOS) is the
most important mechanism of the
macrophage to kill Leishmania in vitro and in
vivo [4]. Therefore, the actual amounts of
iNOS present within macrophages and the
capacity to upregulate iNOS expression,
determine the outcome of Leishmania infec-
tion. In accordance with this conclusion,
iNOS expression is low in susceptible
BALB/c mice and high in resistant C57BL/6
mice during infection with L. major [5]. In
addition, mice treated with iNOS inhibitors
or having a genetic defect in iNOS expres-
sion, succumb to infection with L. major
even, if they are of a resistant genetic back-
ground [4, 6]. We have recently shown that
IFNα,β is very critical for early production
of iNOS [7].

IFNγ is by far the most important
cytokine leading to induction of iNOS [4]. In
contrast, TGFβ deactivates the macrophage
and causes downregulation of iNOS [8].
These findings correlate with the potential of
the respective cytokines to influence the par-
asite-killing potential of macrophages in vitro
and the course of murine leishmaniasis in
vivo : macrophages are induced by IFNγ to
kill Leishmania parasites in an NO-depen-
dent manner [9]. Mice of a resistant back-
ground with a genetic defect in IFNγ are
susceptible to the infection with L. major
[10]. In contrast, treatment of L. amazonensis
- infected susceptible mice with an antibody
to TGFβleads to cure of these animals [11],
and there is an inverse correlation between
the tissue expression of TGFβand iNOS [5].

These findings support the conclusion
that production of IFNγ after L. major
infection is critical for cure. Thus, the ques-
tion arises as to which cells are the early
sources of IFNγ. One cell type known to
produce this cytokine early in infection, is
the NK cell. Therefore, it was important to
note that the level of resistance in L. major -
infected mice correlated with NK cell activi-
ty and that depletion of NK cells transiently
aggravated the disease [12]. However, T cell
deficient nude mice which are of a resistant
background and have high NK cell activity,
succumb to the infection, but can be saved
by transfer of syngeneic T cells [13]. Also,
activation of NK cells in susceptible mice
does not lead to final cure of the disease.
Therefore, NK cells are important effector
cells only at the onset of infection. Later,

IFNγ- producing protective T cells take over
the burden for successful clearance of the
parasites by activated macrophages.

Experimental cutaneous leishmaniosis and
Th1/Th2 cells

Soon after the Th1/Th2 concept was first
published, it was speculated that the protec-
tive T cells might resemble Th1 cells and
that the inbred mouse strains might differ in
the Th cell subsets expanding during L.
major infection. First evidence that this
assumption might be correct, was provided
by cell transfer experiments in which a L.
major - specific Th1 cell line protected mice
from disease, while a Th2 cell line trans-
ferred exacerbation [14]. Subsequently, the
cytokine mRNAs present in the lesion-drain-
ing lymph nodes of L. major - infected were
determined. In support of the original
hypothesis, resistant mice expressed mRNA
for Th1 cytokines, while susceptible mice
expressed mainly mRNA for Th2 cytokines
[15]. Cure of susceptible mice by treatment
with anti-CD4 antibodies correlated with
upregulation of mRNAs for Th1 cytokines.
Further evidence that Th2 cells are responsi-
ble for the fatal course of leishmaniasis
came from experiments in which Th2
cytokines were manipulated in vivo .
Neutralisation of the Th2 cell growth factor
IL-4 rendered susceptible mice resistant [16],
while mast cells, as a source of IL-4, aug-
mented the of L. major - induced lesion size
[17].

All these results raise the question: why do
susceptible mice expand Th2 cells and resis-
tant mice Th1 cells ?  In pursuing this ques-
tion, several investigators tried to adapt the
basic knowledge about the generation of
Th1 and Th2 cells to the model of murine
leishmaniasis. It was shown that a decrease
of the parasite - (and therefore antigen-)
load shifted BALB/c mice towards the resis-
tant phenotype [18]. B cells as potential APC
for Th2 cells exacerbated the disease in sus-
ceptible mice [19]. Treatment with IL-12, the
main inducer of Th1 cell differentiation,
rendered BALB/c mice resistant [20].

While these investigations identified sever-
al compontents of the protective immune
response against L. major, they did not
unravel the genes that are responsible for
the difference between C57BL/6 and
BALB/c mice. Attempts to identify these
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genes came from three types of studies: first,
it was shown in bone-marrow chimeras that
both T cell and non-T cell compartments of
susceptible BALB/c mice contribute to their
susceptible phenotype [21]. Second, it was
recently shown by our group that the IL-4
receptor differs in eight amino acids
between BALB/c and C57BL/6 mice result-
ing in altered IL-4 binding capacities [22].
Importantly, it was shown that, due to this
sequence difference, the BALB/c receptor
has a significantly elevated dissociation rate
for IL-4. This result raises the possibility that
IL-4 might have extended bioactivity in
BALB/c mice compared to other mouse
strains. Third, experiments were performed
in the absence of L. major parasites using
BALB/c and B10.D2 mice carrying an iden-
tical TCR transgene reactive with ovalbumin.
Because B10.D2 mice are of C57BL/6 origin,
but contain MHC genes similar to BALB/c
mice, this system allowed the analysis of the
T cell response of both types of mice to an
identical antigenic peptide. It turned out that
transgenic T cells of BALB/c mice primarily
produce IL-4, whereas the B10.D2 ― derived
T cells tend to release IFNγ. The gene
responsible for this phenomenon was
mapped to chromosome 11 [23]. In earlier
studies using backcross breeding and L.
major infection, a gene (termed Scl-1)
responsible for susceptibility was also located
to chromosome 11 [24].

A gene located on chromosome 11 that
might well be responsible for susceptibility is
the gene for the transcription factor interfer-
on-regulatory-factor-1 (IRF-1). We have
recently described that C57BL/6 mice with a
genetic defect in IRF-1 produce Th2
cytokines, lack IL-12 production and are
extremely susceptible to L. major infection
[25]. Although an attractive candidate, IRF-1
certainly does not account alone for the
genetic difference between C57BL/6 and
BALB/c mice; it was recently pointed out
lthat several different loci, only one of which
is located on chromosome 11, are involved
in determining resistance to L. major [26].

Another difference between BALB/c and
C57BL/6 mice that proved to be important
for the clinical course of leishmaniasis was a
peak of IL-4 synthesis in BALB/c, but not
C57BL/6 appearing within 16h after infec-
tion with L. major. This peak disappeared
after 48h and was followed after 72h by

another, long-lasting peak of IL-4 produc-
tion [27]. In C57BL/6 mice, only the later
peak was apparent, although at a lower
level. Absence of the early peak correlated
with resistance in other mouse strains [27].
The peak was produced by NK1.1 negative T
cells. It was demonstrated that this T cell
population carries a TCR composed of
chains of the Vα8/Vβ4 families [28].
Depletion of these T cells converted BALB/c
mice into healer mice. The Vα8/Vβ4 positive
T cells react with the L. major protein LACK
which, when expressed in mice as a trans-
gene, leads to tolerance of the mice towards
it and, interestingly, to resistance towards L.
major infection [29]. Although convincing,
these results do not exclude that a similar T
cell population also exists in resistant
C57BL/6 mice. If so, such a population
might produce early IFNγinstead of IL-4,
due to the genetic difference of C57BL/6
and BALB/c mice. Therefore, at present, it
cannot be ruled out that the difference in
the early IL-4 production between C57BL/6
and BALB/c is not directly responsible for
resistance or susceptibility, but rather is sec-
ondary to another as yet unidentified genet-
ic heterogeneity.
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