The selective action of D₂ dopamine receptor antisense oligodeoxynucleotide on the expression of the dopamine receptor subtype mRNA in rat striatum

Hidehiro ANDOH, Masanobu YOSHIKAWA*1, Mitsuru KAWAGUCHI*2, Hideo MATSUMOTO, Kosuke YAMAZAKI and Tetsuo OKA*1

Department of Psychiatry and Behavioral Science and
*1 Department of Clinical Pharmacology, Tokai University School of Medicine
*2 Department of Pharmacology, Tokyo Dental College

(Received March 30, 2006; Accepted April 12, 2006)

We have evaluated the effect of the D₂ dopamine receptor antisense oligodeoxynucleotide (D₂ AS ODN) on the gene expression of all five dopamine receptor subtypes including D₁, D₂, D₃, D₄ and D₅ dopamine receptor in the rat striatum. The levels of D₂ dopamine receptor mRNA are significantly decreased at 6, 12, 24 h after the last injection of three time injections of D₂ AS ODN, although D₁, D₃, D₄ and D₅ subtype mRNA levels did not significantly reduced at any time. The present study is the first to demonstrate the selective effect of D₂ AS ODN on D₂ dopamine receptor mRNA among all five dopamine receptor subtypes and the effectiveness of D₂ AS ODN without 6-hydroxydopamine.

Key words: D₂ dopamine receptor, mRNA, antisense oligodeoxynucleotide, real time PCR

INTRODUCTION

A growing body of evidence suggests that dopamine receptors play a critical role in mediating locomotor and behavioral activity. Dysfunction of dopaminergic activity may be responsible for a number of neuropsychiatric disorders including schizophrenia [3, 11], parkinsonism [13] and tardive dyskinesia [1]. Dopamine receptors were initially divided into two general categories, designated as the D₁ dopamine receptor and D₂ dopamine receptor, based on the differences in the pharmacological profile and biochemical mechanisms of signal transduction [7, 14, 16]. Following the application of the techniques of molecular biology, the D₁ and D₂ dopamine receptors were cloned by several groups [2, 25]. Subsequently, additional dopamine receptors with homology to either the D₁ or D₂ dopamine receptor were identified. At present time, two families of vertebrate dopamine receptors, designated as D₁-like and D₂-like, are recognized. The D₁-like family is composed of two distinct receptors (D₁ and D₂ subtypes). The D₁-like family is composed of three distinct receptors (D₄, D₅ and D₃ subtypes) [4, 5, 8, 10, 12, 15]. Dopamine receptor subtypes within the same family are pharmacologically similar, making it difficult to selectively stimulate or block a specific receptor subtype in vivo. Thus, the assignment of various physiological or behavioral functions to specific dopamine receptor subtypes using pharmacological tools is difficult. In view of this, many researchers begun to use highly selective genetic approaches to alter the expression of individual dopamine receptor subtypes in vivo. Antisense oligodeoxynucleotide (AS ODN), designed to hybridize with specific sequence of the mRNA that encode the targeted protein, has been used to inhibit the synthesis of the transcripts and the proteins, and thereby estimate the function of the protein [6, 17, 18]. Previous studies reported that the intracerebroventricular (i.c.v.) administration of AS ODN against the D₁ dopamine receptor (D₁ AS ODN) inhibited the expression of the D₁ dopamine receptor mRNA but not that of the D₂ dopamine receptor one in the striatum treated unilaterally with 6-hydroxydopamine (6-OHDA), called the unilateral lesioned striatum [19, 24]. However, there are two defects in these results. First, these results showed the effects of D₂ AS ODN on the mRNA expressions of D₂ and D₂ dopamine receptors, but remained to be examined on those of D₁, D₃ and D₅ dopamine receptors. Second, D₂ AS ODN decreased D₂ dopamine receptor mRNA in only the unilateral lesioned striatum, but not the unilateral untreated striatum with 6-OHDA, called the unilateral unlesioned striatum. It is important to recognize that the unilateral lesioned striatum increases the levels of D₂ dopamine receptor mRNA compared with the unilateral unlesioned one [24]. The administration of D₂ AS ODN, in turn, may produce a down-regulation of increase for the levels of D₂ dopamine receptor mRNA in the unilateral lesioned striatum.

In the present study, we have evaluated 1) the effect of D₂ AS ODN on the mRNA expressions of D₁, D₂, D₃, D₄ and D₅ dopamine receptor subtypes and 2) the effectiveness of D₂ AS ODN in the rat striatum without 6-OHDA.

MATERIAL AND METHODS

Animals and Materials

The present animal experiments were performed in strict accordance with the guidelines of Tokai
University, and were approved by the Animal Investigation Committee of the University. Male Wistar rats (Clea Japan, Tokyo, Japan) weighing 200 to 250 g were group-housed in laboratory cages and kept in a temperature-controlled room (23 ± 2°C) with a 12 h light / dark cycle (light on: 07:00) with food and water freely available. SUPERSCRIPT First-Strand Synthesis System for RT-PCR containing reverse transcriptase (RTase) (Superscript II, RNase H-), diithiothreitol (DTT), oligo(dT)20 primer, deoxyribonucleoside triphosphates (dNTP), RNase H, DNase I and RNase inhibitor were purchased from Invitrogen (San Diego, CA, USA). SV Total RNA Isolation System and PCR Master Mix from Promega (Madison, WI, USA). DyNAamo SYBR green qPCR Kit were from Finnzymes (Espoo, Finland), DNA 1000 Lab Chips Kit (Agilent Technologies; Palo Alto, CA, USA) were from Takara Bio Co. (Tokyo, Japan). PCR primers were synthesized by Sigma Genosys Japan (Tokyo, Japan). All other chemicals and reagents were purchased from Wako Chemical Co. (Tokyo, Japan) unless otherwise noted.

Oligodeoxynucleotide (ODN)

Based on the cDNA sequence for the D2 (Bunzow et al., 1988), a 20-mer ODN was designed and synthesized. The sequence of D2 AS was 5'-GTT GAT CCA TTT GGG CAG TGG TG-3' as reported previously [24]. And the sequence of random ODN was 5'-GCT GGT AGT AGC GTG AGC GTG TG-3'. Metabolically stable phosphorothioate analogues of ODN were used in the present study. Gel-filtrated and HPLC-purified ODNs were dissolved in sterilized water and stored at -20°C.

Administration of ODN into striatum

Male Wistar rats were anesthetized with pentobarbital sodium (40 mg/kg, ip) and mounted on a stereotaxic frame (Narishige, Tokyo). Stainless-steel guide cannulae (outer diameter, 0.55 mm) were implanted. Four days after operation, an injection cannula (outer diameter, 0.33 mm; 16 mm in length) was inserted into left striatum through the guide cannula at the following stereotaxic coordinates: AP +0.5 mm; V +7.0 mm; L -3.0 mm [9]. Ten micrograms of AS, sense or random ODN in 1 µl of saline, or 1 µl of saline alone were microinjected through an injection cannula at a flow rate of 0.5 µl/min. Injection cannula was released from guide cannula 2 min after each injection. Rats were administrated AS ODN, sense ODN, random ODN, or saline three times at 48 h interval.

Dissection of striatum

Before the dissection of the striatum, 1 µl of 0.1% bromophenol blue was injected into the striatum through injection cannula at flow rate of 0.5 µl/min. Twenty minutes after the dye injection, rats were decapitated, and the brain was removed and placed on an ice-cooled glass petri dish. By observing the dye staining, the striatum block (1 × 1 × 3 mm) was dissected out.

RNA extraction and reverse transcription

The total RNA was extracted by a method similar to the one described previously [22]. The total RNA in the striatum was extracted by using SV Total RNA Isolation System. Total RNA (0.5 µg) was incubated with 200 units of reverse transcriptase in a buffer containing 50 mM Tris-HCl (pH 8.3), 40 mM KCl, 2.5 mM MgCl2, 10 mM dithiothreitol, 0.5 mM of each dNTP, and 0.5 µg oligo (dT)20 primer in the final volume of 20 µl. The mixture was incubated at 42°C for 50 min, and the reaction was stopped by heating at 70°C for 15 min. The RNA was removed by adding 2 units of ribonuclease H to facilitate the synthesis of double stranded cDNA.

Quantitative Real-Time Polymerase Chain Reaction (PCR)

D2 receptor gene expression was determined by real-time PCR using the glyceraldehydes 3-phosphated dehydrogenase (GAPDH) [20, 21] (GenBank accession number NM_017008) gene as an internal control and primers specific for D2 mRNA (accession number NM_012546). D2 mRNA (accession number NM_012547), D2 mRNA (accession number NM_017140), D2 mRNA (accession number NM_012944) and D2 mRNA (accession number NM_012768) (Table 1).

The cDNA was amplified by real-time PCR using DyNAamo SYBER green qPCR Kit (Finnzymes, Espoo, Finland) on the DNA Engine Opticon 2 System (MJ Research, Inc. MA, USA) running 35 cycles of the following protocol: 10 min predenaturation at 95°C, 15 sec denaturation at 95°C, 20 sec at 58°C for D2, D2, and D2, 60°C for D2 and D2, or 62°C for GAPDH, followed by a 20 sec extension at 72°C. The PCR products were separated by an Agilent 2100 Bioanalyzer (Agilent Technologies; Palo Alto, CA, USA), which utilizes chip-based nucleic separation technology. DNA 1000 Lab Chip (Agilent Technologies) was loaded with the samples as recommended by the manufacturer. Furthermore, the identification of the amplified PCR products of the dopamine receptors and GAPDH cDNAs were determined by the dye terminator cycle sequencing.

Statistical analysis

The results are given as mean with standard error of the mean (S.E.M.) of the data. A statistical analysis

<table>
<thead>
<tr>
<th>Gene</th>
<th>primer sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAPDH</td>
<td>upper GTG GAC CTC ATG GCC TAC AT</td>
</tr>
<tr>
<td>lower TGT GAG GGA GAT GCT CAG TG</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>upper CTC CTT ATG GAA CCC TAC CA</td>
</tr>
<tr>
<td>lower CAG GAT GAG CAG TCA CAG GA</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>upper TGG ATC CAC TGA ACC TGT CC</td>
</tr>
<tr>
<td>lower TGG TAG TGG GGC CTG TCT G</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>upper TTA GCC CAC ATT GCT TGC TG</td>
</tr>
<tr>
<td>lower GGA GTG GAT GGT GCT GTA</td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>upper ATG GCC CTT GAC TGC AAA TC</td>
</tr>
<tr>
<td>lower AGT CCG GTC CCA GTA CCT AA</td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td>upper AGC ATG CTC AGA GTT GCC GG</td>
</tr>
<tr>
<td>lower ACA AGG GAA GCC AGT CTT TGG</td>
<td></td>
</tr>
</tbody>
</table>
was conducted using computer software (Statview; SAS Institute, Cary, NC, USA) for comparison across the experimental conditions. A statistical evaluation was carried out using Mann-Whitney U test. A P-value < 0.05 was considered as reaching statistical significance.

RESULTS

Results of real-time PCR

The PCR of the rat brain cDNAs with primers for five distinct dopamine receptors gave a single product of the expected size determined by the Agilent 2100 Bioanalyzer, respectively. Tenfold serial dilutions of the cDNA were used to construct a standard curve from 10^7 copies to 10^9 copies. Figure 1A presents typical amplification plots for standards of D2 receptor. A standard curve was then generated from the Ct values (threshold cycle) (Fig. 1B). Linear regression analysis, plotting the cycle number versus the log quantity of the PCR products, gave a straight-line plot and a correlation coefficient of 0.992, which indicated that our system was able to accurately quantify the cDNAs ranging from 10^7 to 10^9 copies for the D2 dopamine receptor. A melting curve analysis also revealed that the D2 dopamine receptor-specific primer pair amplified a single predominant product with a melting temperature of 82.3 °C (Fig. 1C).

Selective decrease in D2 mRNA by D2 AS ODN

As shown in Fig. 2A, microinjection of D2 AS ODN caused a gradual decrease in the expression of D2 subtype mRNA relative to that of GAPDH mRNA in the striatum of rats treated with saline was expressed as 100%; 6 h (64%), 12 h (47%), 24 h (14%), and 48 h (69%). However, D1, D3, D4 and D5 dopamine receptor subtype mRNA levels did not significantly reduce at any time. As shown in Fig. 2B and 2C, microinjection of D2 sense ODN or random ODN did not significantly change the gene expression of five dopamine receptor subtypes (D1, D2, D3, D4, and D5) at any time.
DISCUSSION

The present study demonstrates 1) the administration of D2 AS ODN into the striatum transiently and markedly decreases the D2 dopamine receptor mRNA and 2) D2 AS ODN does not reduce D1, D4 dopamine receptor mRNA, nor the D1-like (D3, D5 subtypes) dopamine receptor mRNA in the striatum at any time (Fig. 2A). As previous studies examined the effect of D2 AS ODN on the mRNA expressions of only D1 and D2 dopamine receptors [19, 24], the present study is the first to demonstrate the specific effect of D2 AS ODN among the mRNA expressions of all five dopamine receptor subtypes including D1, D2, D3, D4 and D5 dopamine receptor. In addition to denial of the effect of D2 AS ODN on the mRNA expressions of D1, D3, D4 and D5 dopamine receptor, there is an important benefit in our study. As the treatment of the striatum with 6-OHDA increases the levels of the D2 dopamine receptor mRNA [24], the previous study showed that D2 AS ODN inhibited the increase for the levels of D2 dopamine receptor mRNA in the unilateral lesioned striatum. In contrast, the present study shows that D2 AS ODN significantly decreases the D2 dopamine receptor mRNA in the untreated striatum from the non-elevated levels.

Figure 2A shows that the direct administration of D2 AS ODN into the striatum transiently and markedly decreases the D2 dopamine receptor mRNA in the unilateral lesioned striatum. In contrast, the present study shows that D2 AS ODN significantly decreases the D2 dopamine receptor mRNA in the untreated striatum from the non-elevated levels.

Figure 2A shows that the direct administration of D2 AS ODN into the striatum transiently and markedly decreases the D2 dopamine receptor mRNA in the unilateral lesioned striatum. In contrast, the present study shows that D2 AS ODN significantly decreases the D2 dopamine receptor mRNA in the untreated striatum from the non-elevated levels.
AS ODN at the site of action is clear from the results that the magnitude of inhibitory effect of AS ODN on the expression of target gene is a dose dependent manner [22, 24]. The concentration of AS ODN in the striatum after the direct administration is suggested to be higher than that after the i.c.v. administration, although total doses administered in the present study (1.5 nmol × 3 times injections = 4.5 nmol) are lower than those in the previous study (2.5 nmol × 15 times injections = 37.5 nmol). Second, the importance of the time to analyze the level of mRNA expression after the last administration of AS ODN is demonstrated by a fact that the onset (6 h) of action is slow, in other words, the AS ODN does not easily penetrate into the cell (Fig. 2A). The previous studies merely showed the D2 dopamine mRNA levels 2 h after the last injection of D2 AS ODN [19, 24]. Considering the rout of administration of AS ODN, the onset or offset time of the inhibitory effect of the i.c.v. administration may be slower than the direct administration into the striatum. Further studies such as in situ hybridization are needed to determine how widespread the effects of the direct administration of the AS ODN compared with the i.c.v. administration.

The present study indicate that the D2 AS ODN is one of the useful agents to elucidate the role of the D2 dopamine receptor in the striatum as realizing a difference among five dopamine receptor subtypes and is effective without 6-OHDA increasing D2 mRNA expression.

ACKNOWLEDGEMENTS

This study was supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan and from the Research and Study Program of the 2005 Tokai University Educational System General Research Organization.

REFERENCES

13) Seeman P, Niznik HB. Dopamine receptors and transporters in Parkinson’s disease and schizophrenia. Faseb J 1998; 4: 2737-44.