# Minimal Inspiratory Flow from Dry Powder Inhalers According to a Biphasic Model of Pressure vs. Flow Relationship

Kazuo KANABUCHI<sup>\*1</sup>, Tetsuri KONDO<sup>\*2</sup>, Toshimori TANIGAKI<sup>\*3</sup>, Sakurako TAJIRI<sup>\*4</sup>, Naoki HAYAMA<sup>\*4</sup>, Yoko TAKAHARI<sup>\*5</sup> and Kayoko IWAO<sup>\*5</sup>

<sup>\*1</sup>Department of Cardiovascular Surgery and <sup>\*2</sup>Department of Respiratory Medicine, Tokai University Hachioji Hospital <sup>\*3</sup>Department of Clinical Health Science, <sup>\*4</sup>Department of Respiratory Medicine, and <sup>\*5</sup>Support Center of Medical Studies, Tokai University School of Medicine

(Received August 18, 2010; Accepted November 9, 2010)

Inhalation therapy using the dry powder inhaler (DPI) is now the first choice for obstructive pulmonary diseases. We previously measured relationships between inspiratory pressure ( $P_I$ ) and flow rate of almost all of the DPIs available in Japan, and described an importance of inspiratory efforts. In the present study, we further analyzed the data obtained in the previous study. Although there were linear relationships between  $P_I$  and flow<sup>2</sup>, the slope became steeper when  $P_I$  was less than a certain value (critical  $P_I$ , existed between 15–20 cmH<sub>2</sub>O). When  $P_I$  was less than critical  $P_I$ , linear rather than parabolic regression between  $P_I$  and flow yielded better fits (r > 0.90, p < 0.001). Inspiratory flows at the critical  $P_I$  were 53.9 (Diskus), 65.8 (Diskhaler), 45.9 (Turbuhaler for Pulmincort), 48.6 (Turbuhaler for Symbicort) and 38.0 l/min (Twisthaler). These findings suggested that flow through the DPI becomes laminar rather than turbulent flow in the range below critical  $P_I$ s. We suggest that patients should inhale from the DPIs with inspiratory pressure higher than critical  $P_I$ .

Key words: inhalation therapy, bronchial asthma, COPD, rheology

#### INTRODUCTION

Recently, inhaled steroids combined with long acting beta-stimulants are commonly prescribed for treatment of bronchial asthma and chronic obstructive pulmonary disease [1, 2]. These inhaled drugs may be beneficial to the patients with comorbid cardiovascular diseases to avoid sympathomimetic adverse effects. Many of the currently used inhaled drugs are dry powder formulation which is inhaled by patient's inspiratory flow. For optimal delivery of dry powders to the smaller bronchi, proper use of the DPI devices and suitable inhalation flow rates are both important. However, although many papers about instruction of DPI usage have been published [3, 4], little attention has been paid to inspiratory flow from the DPI. Previously, we have measured relationship between inspiratory pressure (P<sub>I</sub>) and inspiratory flow rate (flow) of almost all the DPI devices available in Japan [5], and found parabolic relationships between P<sub>I</sub> and flow. However, by further analyzing the data, it seemed that flow was always smaller than predicted value when P<sub>1</sub> was small. Therefore, in the present study, we precisely analyzed data in that study again to provide more suitable model of  $P_I$  vs flow relationship.

#### METHOD AND DATA

The data analyzed in the present study was  $P_1$  and flow from the five devices, i.e., Diskus, Diskhaler, Turbuhaler for Pulmincort (Turbuhaler-P), Turbuhaler

for Symbicort (Turbuhaler-S), and Twisthaler, obtained in the previous study [5]. The method has been described in the previous paper [5]. In brief, as shown in Fig. 1, we set each DPI in a tightly sealed box, and applied several levels of negative pressure to the mouthpiece. A pneumotachometer was fixed to another end of the sealed box. We obtained  $P_I$  and flow relationship of individual DPIs with this setting.

Fig. 2 shows the data from Twisthalers. There is an extremely good linear relationship between flow<sup>2</sup> and P<sub>t</sub> (Fig. 2A). We have confirmed all the DIPs have such extremely linear relationships [5]. However, it is also seen that the data points located below the regression line (dashed line) in the range below a certain  $P_{I}$  (critical P<sub>1</sub>). This finding is more prominent when the data was expressed as flow vs. P<sub>1</sub> relationship (parabolic model) (Fig. 2B). In rheological consideration, linear increases in flow<sup>2</sup> with P<sub>1</sub> increments suggest that the flow passing through the DPI is turbulent. In the low P<sub>I</sub> range this relationship disappeared, and it suggests that turbulent flow no more developed. We hypothesized that the flow assumed another condition, i.e. laminar flow, in this range. If such assumption is true, the flow instead of flow<sup>2</sup> may linearly increase with P<sub>1</sub> increments.

Therefore, in the present study, we fitted  $P_I$  vs. flow with a linear model in low flow range and did with a parabolic model in high flow range (biphasic model).

Tetsuri KONDO, Department of Internal Medicine, Tokai University Hachioji Hospital 1838 Ishikawa-machi, Hachioji, **Tokyo 192-0032, Japan** Tel: +81-42-639-1111 Fax: +81-42-639-1112 E-mail: tetsuri@hachioji-hosp.tokai.ac.jp



**Fig. 2** Examples of  $P_1$  vs. flow<sup>2</sup> relationship (A) and  $P_1$  vs. flow relationship (B) of Twisthalers. All the flow points scatter below the regression curve (dashed curve) in the rage below a certain  $P_1$ .  $P_1$ : inspiratory pressure.

## RESULTS

In all the DPIs the flow was smaller than the predicted value when  $P_{I}$  was smaller than a certain  $P_{I}$ (critical P<sub>1</sub>). Critical P<sub>1</sub>s of Diskus and Diskhaler were approximately 17.5 cmH<sub>2</sub>O, and those of Turbuhaler-P, Turbuhaler-S and Twisthaler were approximately 15 cmH<sub>2</sub>O. Thus, we temporarily decided lower P<sub>1</sub> range as 0-20.5 cmH<sub>2</sub>O and higher one as 15.0-100 cmH<sub>2</sub>O for Diskus and Diskhaler, and as 0-18.0 cmH<sub>9</sub>O and 12.0-100 cmH<sub>2</sub>O for Turbuhaler-P, Turbuhaler-S and Twisthaler. We drew a regression line for  $P_1$  vs. flow in lower  $P_1$  rage, and another regression line for  $P_1$  vs. flow<sup>2</sup> in higher P<sub>I</sub> range for each DPIs. The intercept point of the two regression curves was regarded to be a critical P<sub>I</sub>. Then we calculated parameters of two regression lines, i.e., those for  $P_I$  vs. flow (lower  $P_I$ rage) and P<sub>1</sub> vs. flow<sup>2</sup> (higher P<sub>1</sub> range). The results are shown in Table 1.

Fig. 3 shows the regression curves for Twisthalers based on the two models (parabolic model and biphasic model). One can see that the regression curve based on the biphasic model (solid curve) fits better than the parabolic model (dashed curve).

All the regression curves either in the lower or higher  $P_1$  ranges had extremely high r (> 0.90) and low p (< 0.001) values in any of DPIs. Table 1 shows parameters of these regression lines or curves. In the low pressure range it was expressed as "flow = a x  $P_1$  + b", and in the high pressure range it was "flow<sup>2</sup> = a x  $P_1$  +b". Critical  $P_1$  and the flow at the critical  $P_1$  are also shown in Table 1. To express fitness of the regression curves to the data points, we defined a parameter S. S at low pressure range was expressed as SI, and that at high pressure range was named as Sh.

 $S = \sqrt{(\sum (real Yi - predicted Yi)^2/(n - 2))}$ 

Where real Yi is a flow value at  $P_I = i$ , and predicted Yi is corresponding flow on the regression line. n is a sample number. If "real Yi – predicted Y" distributed with a normal distribution, S means the standard deviation to the linear regression line.

In any of the devices, Sl of the biphasic model was always smaller than that of the parabolic model, and Sh of the biphasic model was also smaller than that of the parabolic model. Thus, it can be said that the regression curves in the present study fitted better than

Table 1Parameters of linear regression lines expressed as  $y = a \times +b$ , and critical  $P_I$  and critical flow. Turbuhaler-P:<br/>Turbuhaler for Pulmincort, Turbuhaler-S: Turbuhaler for Symbicort. n is sample number of each devices.<br/> $S = \sqrt{(\sum (real Yi - predicted Yi)^2/(n - 2))}$ , SI, Sat low pressure range. Sh, S at high pressure range.

| device       | n | Parameters of regression curves |      |      |                     |        |      | Critical                       | Critical | Parameters of regression curves |       |      |      |
|--------------|---|---------------------------------|------|------|---------------------|--------|------|--------------------------------|----------|---------------------------------|-------|------|------|
|              |   | Low pressure range              |      |      | High pressure range |        |      | pressure                       | Flow     | in the previous analysis        |       |      |      |
|              |   | а                               | b    | SI   | а                   | b      | Sh   | $(\mathbf{cmH}_{2}\mathbf{O})$ | (l/min)  | а                               | b     | Sl   | Sh   |
| Diskus       | 5 | 1.99                            | 25.5 | 4.47 | 120.7               | 1188.0 | 1165 | 14.3                           | 53.9     | 126.0                           | 872.2 | 5.09 | 1171 |
| Diskhaler    | 3 | 2.19                            | 25.7 | 1.41 | 156.1               | 1480.0 | 566  | 18.3                           | 65.8     | 167.0                           | 780.4 | 3.07 | 639  |
| Turbuhaler-P | 5 | 1.32                            | 22.7 | 1.51 | 77.3                | 751.4  | 339  | 17.6                           | 45.9     | 79.3                            | 626.8 | 1.84 | 357  |
| Turbuhaler-S | 4 | 1.36                            | 24.4 | 1.18 | 87.1                | 812.0  | 383  | 17.8                           | 48.6     | 89.0                            | 688.3 | 2.00 | 400  |
| Twisthaler   | 5 | 1.19                            | 19.4 | 1.07 | 54.8                | 585.8  | 373  | 15.6                           | 38.0     | 56.4                            | 478.7 | 1.75 | 382  |



**Fig. 3** Comparison of the P<sub>1</sub> - flow regression curves based on a parabolic model (dashed curve) and a biphasic model (solid curve) of Twisthalers.

those in the previous study.

Fig. 4A shows flow vs.  $P_I$  prediction curves of all the DPIs based on the biphasic model. Comparing with the parabolic model (Fig. 4B) [5], newly calculated prediction curves had apparent inflection points.

## DISCUSSION

Although many studies concerning instruction of the DPI usage have been published [3, 4], little attention has been paid to inspiratory flow from the DPI. As is known, inspiratory flow is a critical factor for delivering dry powders to the airways using the DPI systems [6, 7]. Although many papers about minimal flow rates for effective drug delivery from DPIs have been published [6-8], usually patients can perceive level of their inspiratory efforts rather than flow rates. Thus, for instruction of optimal inspiratory flow, it is necessary to know relationship between inspiratory efforts and flow rates through individual DPIs. We have shown a graph presenting this relationship in the previous paper (Fig. 4B) [5]. By using that graph, the physician can instruct optimal efforts to inhale from each DPI. For example, to instruct inspiration at 40 l/min through Twisthaler, "inspire with an effort to drink orange juice using 20 cm length straw" may be easy to understand.

Most of the DPIs contain a mechanism which disperses powdered drug to be fine particles. Owing to this mechanism, fine particle drugs are effectively delivered to the distal, as well as proximal, airways. All the DPIs analyzed here generate fine particles by turbulent flow in the inspiratory channel. In the previous study we assumed that inspiratory flow was turbulent in entire flow range. However, in rheological considerations, turbulent flow no more develops when flow becomes low. If this is true, dispersion of powdered drug may decrease in low flow range. In the present study, we have reviewed the data in the previous report [5], and found that exact flow rates were always smaller than predicted ones at low P<sub>1</sub> (i.e. low flow) range. The present study revealed that linear regression more excellently fit to the P<sub>1</sub>-flow data in the low flow range, suggesting that inspiratory flow became laminar rather than turbulent in that range.

The critical flows, at which turbulent flow became linear, of large channel DPIs were 53.9 l/min for



**Fig. 4** Simulated P<sub>1</sub> vs. flow relationships of all DPIs based on parameters shown in Table 1. A: curves based on a biphasic model. B: curves based on a parabolic model (5).

●: Diskhaler, ○: Diskus, ■: Tubuhaler for Symbicort, □: Turbuhaler for Pulmicort, ▲: Twisthaler,

Diskus and 65.8 l/min for Diskhaler. The critical flow for Diskus was higher than the minimum flow rate for drug dispersion reported by Prime *et al.* (30 l/min) [7] or Hill *et al.* (30 L/min) [9], but near to that reported by Palander *et al.* (60 L/min) [8]. The critical flow for Diskhaler was between the minimum flows reported by Srichana *et al.* (30 l/min) [10] and Prime *et al.* (90 l/min) [7]. On the other hand, the critical flow of small channel DPIs were less than those for large channel DPIs. They were 45.9 l/min (Turbuhaler-P), 48.6 l/min (Turbuhaler-S), 38.0 l/min (Twisthaler). Crtical flow for Turbuhalers (-P and -S) were smaller than the minimal inspiratory flow for drug emission reported by Palander *et al.* (60/ l/min) [9] or Tarsin *et al.* (60–90 1/min) [6]. The critical flow for Twisthaler was higher than minimal flow by Yang et al. (~30 l/min) [11]. Therefore, critical flow rates determined here were generally slightly higher than minimal inspiratory flows determined by drug dispersion. Presumably in low P<sub>1</sub> range, turbulent flow still exited in inspiratory channel but it gradually disappeared while P<sub>I</sub> became smaller. We speculate that when the patient inhales from DPI with flow less than critical flow, only small amount of fine particles may be generated and delivery to the small airways may become less. Therefore, this study suggests that both large channel DPIs (Diskus and Diskhaler) and narrow channel devices should be inhaled with inspiratory pressure higher than 15-18 cmH<sub>2</sub>O. Considering studies those have been reported [6, 9], inspiratory efforts higher than critical  $P_1$  may be encouraged for small channel DPIs [5].

In conclusion, further analyses of the data in the previous study suggested that patients should inhale from DPI with efforts higher than critical  $P_{I}$ .

#### REFERENCES

- 1) Global strategy for asthma management and prevention, updated 2008. ed. Bateman E. www. ginasthma.org 2008.
- 2) Global strategy for the diagnosis management of for chronic obstructive lung disease. ed. Buist SA, www.goldcopd.org, 2006.
- Kesten S, Elias M, Cartier A, *et al.* Patient handling of a multidose dry powder inhalation device for albuterol. Chest 105: 1077-1081, 1994.
- Nielsen K, Okamoto L, Shah T. Importance of selected inhaler characteristics and acceptance of a new breath-actuated powder inhalation device. J Asthma 34: 249–253, 1997.
- Kondo T, Tanigaki T, Tazaki G, *et al.* The relationship between inspiratory pressure and flow through dry powder inhaler available in Japan. Jpn J Allergol. 59: 950–955, 2010.
- Tarsin W, Assi KH, Chrystyn H. In-vitro and inter-inhaler flow rate-dependent dosage emission from a combination of budesonide and eformoterol in a dry powder inhaler. J Aerosol Med 17: 25–32, 2004.
- 7) Prime D, Grant AC, Slater AL, *et al.* A critical comparison of the dose delivery characteristics of four alternative inhalation devices delivering salbutamol: pressurized metered dose inhaler, Diskus inhaler, Diskhaler inhaler, and Tubuhaler inhaler. J Aerosol Med 12: 75-84, 1999.
- Palander A, Mattila T, Karhu M, *et al.* In vitro comparison of three salbutamol-containing multidose dry powder inhalers. Clin Drug Invest 20: 25–33, 2000.
- Hill LS, Slater AL. A comparison of the performance of two modern multiple dry powder asthma inhalers. Respir Med 92: 105-10, 1998.
- 10) Srichana T, Martin GP, Marriott C. Dry powder inhalers: the influence of device resistance and powder formulation on drug and lactose deposition in vitro. Eur J Pharmaceut Sci 7: 73–80, 1998.
- Yang T, Li S, Wyka B, Kenyon D. Drug delivery performance of mometasone furoate dry powder inhaler. J Aerosol Med 14: 487-94, 2001.