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INTRODUCTION

Cyanide is widely used for industrial purposes, but 
may also be exploited as a suicidal, homicidal, and 
chemical warfare agent [1, 2]. Acute cyanide poisoning 
induces rapid and lethal neurological symptoms that 
require immediate and vigorous medical treatment [3, 
4].

Many researchers have studied the toxicity profile 
of cyanide in vitro by using cultured cells and in vivo 
in experimental animals [5–7]. Consideration of ani-
mal welfare has led to efforts focused on determining 
whether in vitro data can be extrapolated to assess 
acute toxicity in experimental animals and humans 
[8–13]. However, a weak correlation was found be-
tween the cytotoxicity of potassium cyanide (KCN) in 
vitro and its acute toxicity in vivo [14–16], because the 
ratio of in vitro median effective concentration (EC50) 
to human lethal dose low (LDLo) for KCN is much 
higher than that of other toxic chemical compounds 
[16]. This discrepancy could result from the existence 
of in vitro conditions that do not resemble specific 
mechanisms of neurotoxicity in vivo [11]. Thus, the 
pheochromocytoma cell line (PC12) has been fre-
quently used to evaluate in vitro neurotoxicity of KCN, 
because the cells are similar to sympathetic neurons 
[5, 7, 17, 18]. However, in undifferentiated PC12 cells 
exposed to KCN for 1 h, the EC50 was 2.5 mM [5], 
which is higher than the lethal blood concentration 
in humans. On the other hand, in differentiated PC12 
cells treated with nerve growth factor, the EC50 of 

KCN was 0.1 mM following 24-h exposure [18]. These 
findings suggest that the in vitro assay itself may be 
one of reasons for a weak correlation between in vitro 
cytotoxicity and in vivo acute toxicity, in addition to 
the speci�c neurotoxicity of KCN in neurons.  

In vitro toxicity of KCN can be affected by many 
factors including medium composition, pH of the 
medium, container forms, and incubation tempera-
ture [19, 20]. Since the acid dissociation constant of 
hydrogen cyanide (HCN) is 9.14 at 25℃, physiological 
pH accelerates vaporization of HCN from the culture 
medium and drastically decreases cyanide concentra-
tion. Arun P et al. reported that the pH of the culture 
medium is an important determinant, among various 
factors, of cyanide removal from the medium [19].

The objective of the present study was to investigate 
whether adjustment of pH from 7.4 to higher than 
9.14 could stabilize the concentration of cyanide in the 
culture medium and decrease the effective concentra-
tion of KCN. Furthermore, we evaluated the antidotal 
effect of hydroxocobalamin (OHCbl) against KCN-
induced toxicity under these conditions.

MATERIALS AND METHODS

Reagents
KCN and trypan blue were purchased from Wako 

(Japan). Fetal bovine serum (FBS), alpha-minimum es-
sential medium (a-MEM), minimum essential medium 
(MEM) and Roswell Park Memorial Institute (RPMI)-
1640 were purchased from Gibco-Invitrogen (Grand 
Island, NY, USA). HEPES and 3-(4, 5-dimethyl-2-thiaz-
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olyl)-2, 5-diphenyl-2H- tetrazolium bromide reagent 
(MTT) were from Dojindo (Japan), and OHCbl was 
purchased from Merck Serono (Tokyo, Japan).

Cell Culture and Media 
NIH-3T3 murine �broblast cells were obtained from 

Cell Bank (RIKEN, Japan). The cells were seeded onto 
a 96-well microplate at a density of 1 × 104, and grown 
in a MEM containing 2200 mg･L-1 of sodium bicarbon-
ate (NaHCO3), 1000 mg･L-1 of glucose 100 U･mL-1 
penicillin, 100 U･mL-1 streptomycin, and 250 U･mL-1 
amphotericin. The cells were maintained at 37℃ in a 
humid atmosphere of 5% CO2 and 95% air. 

KCN and OHCbl were diluted using three types of 
media including the complete medium with NaHCO3 
(described above), the complete medium with HEPES, 
or the glucose-serum-free medium. The complete 
medium with HEPES was composed of MEM, supple-
mented with 10 mM HEPES, 20% FBS, 1% glutamine, 
1000 mg･L-1 glucose, and maintained at 37 ℃ incuba- incuba-incuba-
tor with 100% air. The glucose-serum free medium was 
composed with RPMI-1640 without glucose, supple-
mented with 10 mM HEPES, and maintained at 37℃ 
incubator with 100% air.

To adjust the pH of the culture media, 1 N hydro-
chloric acid and 1 N sodium hydroxide were added to 
the media immediately before culture media replace-
ment. 

MTT Assay
Cytochrome activity was assessed using the MTT 

assay, as reported by Mosmann [21]. Briefly, cells 
plated in a 96-well microplate were washed twice using 
phosphate-buffered saline (Invitrogen), after which 
100 µL of 0.5 mg･mL-1 of MTT was added to each well 
and incubated for 5 h. Approximately 100 µL of 20% 
sodium dodecyl sulfate was then added and incubated 
for 12 h. Finally, the absorbance was measured at a 
wavelength of 570 nm using a spectrophotometer 
(Hitachi, Japan); the readings were recorded as Δ

OD570/1 × 104 cells.

Cell Viability Assay
Cell viability was determined using the trypan blue 

dye exclusion (TBDE) assay. Adherent cells cultured in 
a 96-well plate were collected by trypsinization. An ali-
quot of the cell suspension was diluted 1 : 1 with 0.4% 
trypan blue solution and the cells were counted using 
a hemocytometer (Burker-turk line, Erma, Japan). Cell 
viability was expressed as the percentage of trypan 
blue-negative cells.

Measurement of Cyanide Concentration
Cyanide concentrations in the media were mea-

sured using headspace gas chromatography mass 
spectrometry (HS-GC-MS) as reported by Seto [22]. 
Briefly, 100 µL of the KCN solution was added to a 
4-mL clear vial (Sigma-Aldrich, St. Luis, MO, USA) and 
immediately sealed. After heating for 30 min at 70℃, 
the evaporated sample was extracted and injected into 
a gas chromatograph equipped with a nitrogen phos-
phorus detector (Agilent 6890, Agilent Technologies, 
USA), and the peak area of HCN was measured us-
ing HS-GC-MS. A standard curve was constructed by 

plotting the HCN peak areas against the respective 
concentrations of the KCN solution (0.625–5.0 mM). 
Cyanide concentrations in the media were calculated 
based on the HCN areas obtained.

Statistical Analysis
Statistical analysis was performed using SPSS II for 

Windows 21.0.1J (SPSS Inc., Tokyo, Japan). The data 
were subjected to the Mann–Whitney U test unless oth-
erwise stated. A p value less than 0.05 was considered 
statistically signi�cant. 

RESULTS

Influence of pH on Cytochrome Activity 
After removing the complete medium with 

NaHCO3, the cells were treated with the complete 
medium with HEPES, with its pH adjusted from pH 
4 to 10, and subjected to the MTT assay. A signi�cant 
decrease in cytochrome activity was observed in cells 
with pH levels below 5 and above 9.6, compared to 
that observed at pH 7 (Fig.1A).

Additionally, the cells were treated with the com-
plete medium with HEPES adjusted to pH 9.2 for vari-
ous periods between 1 and 4 h and then subjected to 
the MTT assay. Although no signi�cant decrease was 
observed when the cells were cultured in the complete 
medium with HEPES (pH 9.2) for 1 h, culture for pe-
riods longer than 2 h resulted in a signi�cant decrease 
in cytochrome activity compared to that in the non-
cultured cells  (Fig. 1B).

Stability of the pH of the Culture Media
Culture medium pH was measured using a pH 

meter (TOADK, Tokyo, Japan) immediately after pre-
paring different concentrations (0–40 mM) of KCN by 
using the complete medium with HEPES or the com-
plete medium with NaHCO3. The pH of the medium 
increased in response to KCN in a dose-dependent 
manner in both media tested (Fig. 2A). 

Next, time-dependent pH change was compared 
between the complete medium with NaHCO3 and the 
complete medium with HEPES. The pH of each me-
dium containing 0, 5, or 10 mM of KCN was adjusted 
to 7.40 ± 0.05 or 9.20 ± 0.05, and the medium was 
incubated for 1 h. The pH of the KCN-containing 
complete medium with NaHCO3 (pH 7.4) increased 
to approximately 7.8 after incubation for 1 h (Fig. 2B). 
Conversely, the pH of the KCN-containing complete 
medium with HEPES (pH 9.2) remained at approxi-
mately 9.2 for the entire incubation period (Fig. 2C).

Changes in Cyanide Concentration 
To compare cyanide concentrations in the two types 

of media, 200 nL of complete medium with NaHCO3 
(pH 7.4) or complete medium with HEPES (pH 9.2) 
containing 5 mM of KCN was added to each well of a 
96-well microplate and incubated for 1 h. Cyanide con-
centrations decreased to 0.94 ± 0.55 mmol･L-1 (18.8% 
of the initial concentration) in complete medium with 
NaHCO (pH 7.4), whereas it decreased to 4.16 ± 0.47 
mmol･L-1 (83.2 % of the initial concentration) in the 
complete medium with HEPES (pH 9.2) (Fig. 3). 
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Fig.1	 In�uence of pH on Cytochrome Activity
	 A) Cells were cultured in 96-well plates using the 

complete media with HEPES adjusted to various 
pH levels (n = 5) for 1 h. *Significant at p < 0.05 
compared to pH 7.

	 B) Cells were cultured for various periods in 96-well 
plates in the complete medium with HEPES with 
pH adjusted to 9.2 (n = 5). *Signi�cant at p < 0.05 
compared to 0 h incubation.
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Fig.2	 Stability of pH of Culture Media
	 A) The dose-dependent changes in pH for each 

medium containing different concentrations of 
KCN. Open circle indicates the complete medium 
with NaHCO3, and open triangle indicates the com-
plete medium with HEPES.

	 B) The time-dependent changes in pH for the com-
plete medium with NaHCO3 containing different 
concentrations of KCN adjusted to pH 7.40 ± 0.05 
(n = 4). 

	 C) The time-dependent changes in pH of the com-
plete medium with HEPES containing different 
concentrations of KCN adjusted to pH 9.20 ± 0.05 
(n = 4).

	 The open circle indicates 0 mM KCN; open square, 
5.0 mM KCN; and open triangle, 10 mM KCN.
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Comparison of Cytochrome Activity 
The toxicity of KCN on cytochrome activity was 

compared among the three culture mediums. Each 
medium containing various KCN concentrations were 
added to the cells and incubated for 1 h, then the cells 
were subjected to the MTT assay.

A significant decrease in cytochrome activity was 
observed in the cells exposed to 40 mM KCN in the 
complete medium with NaHCO3 (pH 7.4), 1.25 mM 
KCN in the complete medium with HEPES (pH 9.2), 
and 0.62 mM KCN in the glucose-serum-free medium 
(pH 9.2) (Fig. 4A-C). 

Antidotal effects of Hydroxocobalamin (OHCbl) on 
Cytochrome Activity

Various concentrations of hydroxocobalamin and 
KCN, prepared using the complete medium with 
HEPES (pH 9.2) or the glucose-serum-free medium 
(pH 9.2), were simultaneously added to the cells, and 
incubation was performed for 1 h. The cells were 
then subjected to the MTT assay. Cytochrome activ-
ity decreased to 0.037 ± 0.0073 in the cells exposed 
to 5 mM KCN alone prepared in the complete me-
dium with HEPES (pH 9.2); however, this decrease 
reversed following the addition of OHCbl, in a dose-
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Fig.3	 Changes in Cyanide Concentration
	 The open circle indicates the cyanide 

concentrations in the complete me-
dium with HEPES containing 5.0 mM 
KCN at pH 9.2 (n = 4). The open rect-
angle represents the cyanide concen-
trations in the complete medium with 
NaHCO3 containing 5.0 mM KCN at 
pH 7.4 (n = 4). *Signi�cant at p < 0.05 
compared to the complete medium 
(pH7.4).
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Fig.4	 Comparison of Cytochrome Activity
	 Cells were exposed to different KCN con-

centrations (n = 6) in (A) the complete 
medium with NaHCO3 (pH 7.4), (B) the 
complete medium with HEPES (pH 9.2), 
and (C) the glucose-serum-free medium 
(pH 9.2) for 1 h. *Signi�cant at p < 0.05 
compared to media without KCN. 
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dependent manner (Fig. 5A). Similarly, cytochrome 
activity decreased to 0.18 ± 0.090 in the cells exposed 
to 1.25 mM KCN alone prepared in the glucose-serum-
free medium (pH 9.2), which also reversed upon the 
addition of OHCbl, in a dose-dependent manner. 
Equimolar addition of OHCbl (1.25 mM) caused no 
signi�cant differences compared to control cells (Fig. 
5B).

Antidotal effects of Hydroxocobalamin (OHCbl) on 
Cell Viability

To determine cell viability, various concentrations 
of OHCbl and KCN, prepared in complete medium 
with HEPES (pH 9.2) or glucose-serum free medium 
(pH9.2), were simultaneously added to the cells and 
incubated for 1 h. Then, the cells were subjected to 
the TBDE assay. 

In the complete medium with HEPES (pH 9.2), cell 
viability reduced to 23.4% ± 10.2% after treatment 
with 10 mM KCN alone; however, it was restored upon 
OHCbl addition, in a dose-dependent manner (Fig. 
6A). Equimolar addition of OHCbl (10 mM) resulted 
in 94.9% ± 7.2% cell viability, which was not signifi-

cantly different from that observed in the medium 
alone (98.0% ± 2.0%, p = 0.44). 

In the glucose-serum-free medium (pH 9.2), cell vi-
ability decreased to 23.7% ± 6.5% in the cells exposed 
to 5 mM KCN alone, and was restored upon OHCbl 
addition, in a dose-dependent manner (Fig. 6B).

DISCUSSION

In vitro cyanide toxicity is extremely variable [23] 
because various factors such as medium pH [19], type 
of culture container used [19], carbon dioxide pres-
sure [24], and incubation temperature [20], can in�u-
ence cyanide concentration in the culture medium 
by inducing vaporization of HCN. Our results showed 
that the complete medium with a pH of 9.2 maintains 
cyanide concentration signi�cantly higher (Fig. 3), and 
lowers the effective concentration of KCN to a greater 
degree compared to that by the complete medium 
with a pH of 7.4 (Fig. 4). These �ndings indicate that 
the nominal effective concentration of KCN reported 
previously may have been measured at a higher value 
when the medium containing KCN was adjusted to pH 
7.4.  
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Fig.5	 Antidotal Effects of Hydroxocobalamin (OHCbl) 
Measured by MTT Assay

	 Cells were treated with various concentrations of 
KCN for 1 h in the presence of various doses of 
OHCbl (A) in the complete medium with NaHCO3 
(pH 9.2) (n = 6), and (B) in the glucose-serum-free 
medium (pH 9.2) (n = 5). *Significant at p < 0.05 
compared to media with no KCN or OHCbl. 
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The pH of the culture medium increased in re-
sponse to KCN in a dose-dependent manner (Fig. 2A). 
However, most previous in vitro studies [5, 6, 9, 16, 
18, 25-30] did not state the exact pH of the culture 
medium containing KCN or NaCN, and the reported 
effective concentration of KCN widely varied, from 
0.1 to 10 mM, in cytotoxicity tests (Table). This vari-
ability may result not only from differences in cellular 
sensitivity, but also from the instability of cyanide 
concentration induced by disparate pH of the culture 
medium. 

In addition to medium pH, the constituents of the 
medium, including glucose [19, 27], serum [31], pro-
tein [9, 30], and amino acids [19], are known to be the 
important factors that affect in vitro KCN cytotoxicity. 
The reaction of cyanide with glucose involves the 
addition of cyanide to the terminal aldehyde group 
of glucose to form a cyanohydrin, which inactivates 
the cyanide ion in the culture medium [19, 32-34]. 
Consistent with this, Bhattacharya et al. reported that 
the cytotoxicity of 10 mM KCN alone, measured using 

the MTT assay, signi�cantly reduced when an equimo-
lar dose of glucose was added to rat thymocytes 10 
min prior to application of KCN [27]. Additionally, 
it is generally recognized that binding of cyanide to 
proteins and serum may affect the bioavailability of 
chemicals including KCN. For example, Dierickx PJ et 
al. demonstrated that the EC50 of KCN in Fa32 cells de-
rived from rat hepatoma cells was 9.7 mM in a normal 
culture medium containing 10% fetal calf serum in 
contrast to 2.9 mM in a protein-serum-free medium [9]. 
We also evaluated KCN cytotoxicity in the absence of 
these factors by using the glucose-serum-free medium. 
The EC of KCN was 0.62 mM in the glucose-serum-
free medium at pH 9.2, which was lower than that in 
the other complete medium at the same pH (Fig. 4). 

Furthermore, we evaluated the antidotal effect of 
OHCbl, which is a clinically-used chelating agent for 
acute cyanide poisoning. OHCbl binds cyanide at a 1:1 
ratio and forms cyanocobalamin (vitamin B12), which 
is excreted in the urine [35]. OHCbl antagonized the 
toxicity of KCN in a dose-dependent manner, both 
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Fig.6	 Antidotal Effects of Hydroxocobalamin (OHCbl) 
Measured by TBDE Assay

	 Cells were treated with various concentrations of 
KCN for 1 h in the presence of various doses of 
OHCbl (A) in the complete medium with NaHCO3 
(pH 9.2) (n = 5), and (B) the glucose-serum-free 
medium (pH 9.2) (n = 5). *Significant at p < 0.05 
compared to the media with no KCN or OHCbl.
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in terms of cytochrome activity and cell viability, and 
completely detoxi�ed KCN toxicity upon addition of 
equimolar OHCbl to the glucose-serum-free medium 
(pH 9.2) (Figs. 5 and 6). Although the antidotal effect 
of OHCbl was apparent, no previous in vitro data are 
available for comparison. Thus, it would be interesting 
to comparatively assess the ef�cacy of other antidotes 
for cyanide, including a-ketoglutarate [36] and 
N-acetyl-cysteine [37], and the novel antidote [38, 39], 
by using this method.

While an alkalized culture medium itself could 
affect the viability of cultured cells, the complete 
medium with a pH of 9.2 did not show a significant 
decrease in the cytochrome activity of NIH-3T3 cells 
within 1 h of incubation, compared to the complete 
medium with a pH of 7.4 (Fig. 1A, B). However, it is 
possible that a combined effect of KCN and alkalized 
medium could have affected the toxicity of KCN in 
either an additive or a synergistic manner in this study.

In this study, the cytotoxicity of KCN was evalu-
ated using murine NIH-3T3 cells because of ease of 
maintenance and tolerance for alkaline culture media. 
The brain is a major target for cyanide [40, 41], and 
vulnerability of neuronal cells to cyanide toxicity 
because of limited anaerobic metabolism, high energy 
dependence, and low energy reserve has long been 
recognized [42]. Therefore, further study is necessary 
to investigate whether differentiated PC12 cells or hu-
man neuroblastoma cells (SH-SY5Y) could be used in 
toxicity tests in the culture medium with pH of 9.2 to 
develop a more sensitive assay system for KCN. 

The primary biochemical action of cyanide is inhibi-
tion of cytochrome c oxidase, the terminal enzyme of 
the electron transport chain [43], resulting in the loss 
of ionic homeostasis and excitotoxicity along with free 
radical-induced damage [41, 44]. Cyanide-impaired 
mitochondrial energy metabolism is followed by 
decreased cellular ATP content [45, 46], elevated cyto-
solic Ca2+ levels [47, 48], and lipid peroxidation [44]. 
Cyanide is known to cause an apoptotic mechanism 
of cell death induced by intracellular oxidative stress 
in differentiated PC12 cells [8, 17], in addition to ne-
crotic cell death induced by inhibition of cytochrome 
enzymes. Since the cytotoxicity of KCN was evaluated 
by only using the MTT assay and TBDE in this study, 
further studies should address not only cytotoxicity but 
also biochemical actions of KCN in various cells. 

In conclusion, adjustment of culture medium pH to 
9.2 could stabilize the cyanide concentration and de-
crease the effective concentration of KCN, leading to 
a stable evaluation of KCN cytotoxicity and antidotal 
ef�cacy. 
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