Estimation of Environmental Control Measures for Tuberculosis Transmission in Care Facilities for the Elderly

Hiroyuki FURUYA

Department of Basic Clinical Science and Public Health, Tokai University School of Medicine

(Received May 10, 2013; Accepted September 27, 2013)

Objectives: Exogenous reinfections in tuberculosis (TB) have been reported among elderly patients in long-term care facilities. This study estimated the impact of upper room ultraviolet germicidal irradiation (UVGI) and negative air ionization on the reduction in TB infection assuming that current TB control failed.

Methods: Estimated probability distributions \(R_{io} \), \(R_{uv} \), \(R_{uv+io} \) and \(R_{io+mask} \) denoting the reproduction numbers of cases with no intervention, wearing surgical mask of infector, upper room UVGI, and negative ionization with wearing mask, respectively, were determined.

Results: It was assumed that 1 TB patient and 29 susceptibles stayed for 10 hours per day when ACH was 3; all subjects stayed for 60 consecutive days. The median \(R_{io} \) increased from 7.38 (15th day) to 11.72 (two month). The percent reductions of \(R_{io+mask} \), \(R_{uv+io} \), and \(R_{io+mask} \) ranged from 52.4% (15th day) to 41.6% (two month), from 76.6% to 68.3%, and from 74.9% to 63.0%, respectively. The percent reductions of slopes; the change of median \(R_{io+mask} \), \(R_{uv+io} \) and \(R_{io+mask} \) for a change in length of stay, were estimated to be 50.8%, 87.3% and 73.7% when ACH was 1.

Conclusions: In addition to case detection and source control measures, environmental control measures may be effective in preventing exogenous reinfection of TB in elderly care facilities.

Key words: tuberculosis, care facilities, ultraviolet germicidal irradiation, negative air ionization, Wells-Riley model

INTRODUCTION

Patients older than 70 years represent 50.1% of newly registered tuberculosis (TB) patients [1]. As the elderly population has grown, the number of nursing homes has increased [1], and these nursing homes have been identified as high-risk environments for TB infection. In a survey of nosocomial infection of TB in elderly patients in nursing homes in Osaka city from 2002 to 2004, TB was diagnosed in 22% of 197 care facilities [2]. Okumura [3] and Kondo [4] reported exogenous reinfections at nursing home for the elderly, and insisted the cause of exogenous reinfections is that the elderly tend to be immunosuppressed by having other complications and malnutrition. Ito [5] reviewed the literatures on exogenous reinfection of TB in HIV-negative persons, and concluded that risk of exogenous reinfection was not rare, and its risk will increase as the growing elderly population who has dementia and other complications, and the increasing number of nursing homes.

It was also reported that automated ventilation systems were installed in 59% of these facilities, and the mean number of air changes per hour (ACH) was 3 in 14% of these facilities [2]. Evidence shows that ventilation rates lower than 2 ACH are associated with higher tuberculin skin test conversion rates among staff in non-isolation rooms [6]. As natural ventilation is reduced in winter or during the night, ventilation rates lower than 2 ACH likely occur in some facilities.

Health examination at acceptance and annual health examination in two kinds of care facilities for the elderly like moderate fee home and health care facility were not regulated by law. Routine tuberculosis examination was not done in fee-based home and health care facility. A delay in tuberculosis case finding has received renewed interest, and evidence of its efficacy and proper use has been proposed [12]. Now, UVGI is an established means of disinfection and has been shown to prevent the spread of airborne infection [10]. On the other hand, some reports indicate that negative air ionizers have bactericidal effects and reduce airborne Salmonella transmission in poultry.
hatching [13]. Escombe et al. [14] showed that upper-room UV lights and negative air ionization prevented most airborne transmission of TB using a guinea pig air-sampling model.

This study used a mathematical model to estimate the impact of upper-room UV light and negative air ionization on the prevention of exogenous reinfection of TB in elderly care facilities with a delay in finding tuberculosis cases.

MATERIALS AND METHODS

Scenario
In this study, a “model” healthcare facility with 300 m² of floor space and a ceiling height of 3 m was used. It was assumed that 30 residents and care workers were present in the facility; of these, 29 who were exposed to each other for 10 hours per day were considered susceptible, and 1 was considered a pulmonary TB patient wearing surgical mask. Health examination at acceptance and annual health examination assumed not to be done in this healthcare facility. A delay of up to 60 days in finding tuberculosis cases in the care facility before consulting a doctor was hypothesized. To reduce TB infection, either upper-room UV lights installed at 2.1 m or negative air ionization units were considered as environmental control measures.

Models
The Wells-Riley equation is a well known transmission model used to quantify the risk associated with inhalation of indoor airborne microbes [10]. This model was used to estimate the reproduction number for an airborne infectious disease in an enclosed environment (R₀).

The reproduction number R₀ for susceptible people (S) in an enclosed space was assumed to be a function of the number of infectious people (I), their infectivity (q), the exposure time (t) per day, susceptible respiration rate (p), room ventilation rate (Q), and total number of exposed days (n) as follows:

$$R_0 = S \times (1 - \exp(-Ipqt/Q))$$ (1)

Quantum generation rate q was back-calculated using the Wells-Riley equation with the mean risks of TB infection in a commercial airline as reported by Ko et al. [15] using epidemiologic transmission data of multidrug resistant TB during an 8.75-h airplane flight. Details of the method of estimating distribution for the quantum generation rate of TB were based on a previous article [16].

Log normal distributions with a geometric mean 0.0127 and a geometric standard deviation of 2.2992 (LN(0.0127, 2.2992)) were used, for which a median 17.5 was estimated for quantum generation rate q that closely represented active TB patients without chemotherapy.

Efficacy of a surgical face mask used by an infector
Dharmadhikari et al. [17] represented 56% risk reduction in TB transmission when patients used masks. If η is the efficiency of a respiratory protection device used by a infector, the reproduction number Rm within susceptible people S with reducing transmission at the source calculated by modifying Equation (1) as follows:

$$R_m = S \times (1 - \exp(-Ipqt/(1-\eta)/Q))$$ (2)

Efficacy of upper room air UVGI
The efficacy of environmental control can be expressed as an equivalent ventilation rate in the lower room that is able to reduce TB incidence by the same amount as would occur by increasing the mechanical ventilation rate [10]. The efficacy of upper room air UVGI depends on the disinfection rate per hour (/h) due to UVGI in the upper room (∆KLW) and can be expressed as follows:

$$\Delta K_{UL} = 3600 \cdot Z \cdot IR$$ (3)

where Z is UV susceptibility (µW × s/cm²) and IR is UV irradiance (µW/cm²) [18].

The lower room air exchange rate (/h) due to upper room UVGI (∆KLW) is expressed as follows:

$$\frac{1}{\Delta K_{UL}} = \frac{1}{V/V_T} \left(\frac{V_U}{V_T} \right) + \frac{1}{\Delta K_{UL}} \left(\frac{V_L}{V_U} \right)$$ (4)

where V/V_T is air mixing inside the room, V is the volume of air coming from the upper part of the room per hour (m³/hr), V_U is the volume of the nonirradiated lower room (m³), V_L is the volume of the irradiated upper room (m³), and $V_T = V_U + V_L$ is the total volume of the room (m³) [19]. The reproduction number Rm within susceptible people S in an enclosed space with upper room air UVGI is calculated by modifying Equation (1) as follows:

$$R_{UV} = S \times (1 - \exp(-Ipqt/(Q + \Delta KL_{UV})V_U))$$ (5)

Efficacy of negative air ionization
Escombe et al. [14] found that negative air ionization brought 51% of TB disease compared with no intervention. The reduced quantum generation rate was applied by multiplying 0.51 times q to represent the negative ionization effect; this was inserted into Equation (1) to get the reproduction number Rm within susceptible people S in an enclosed space with negative air ionization.

Values for model inputs
Basic values for variables used to estimate Rm, Rm, Rm, and Rm for TB infection are shown in Table 1. Values related to the efficacy of upper room UVGI are shown in Table 2 [20-22].

Based on the estimated quantum generation rate and using Equations (1), (2), (3), (4), and (5) with values in Table 1 and 2, Rm, Rm, Rm, and Rm for TB infection were quantified by Monte Carlo simulation with Oracle Crystal Ball software (Oracle Corporation, Redwood Shores, CA, USA). The goodness of fit of distributions was tested using Anderson-Darling statistics.

RESULTS
The estimated probability distribution Rm, Rm, Rm, and Rm showed which denoted the reproduction numbers of cases with only room ventilation (no
Table 1 Base values for variables used to estimate R_t, R_{UV}, and R_t for TB infection

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Base value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of people in enclosed airspace (N)</td>
<td>30</td>
</tr>
<tr>
<td>Volume of shared airspace (V_m^3)</td>
<td>900</td>
</tr>
<tr>
<td>Total exposure time per day (T hours)</td>
<td>10</td>
</tr>
<tr>
<td>Breathing rate ($\beta m^3/h$)</td>
<td>0.3</td>
</tr>
<tr>
<td>Number of infectious people (I)</td>
<td>1</td>
</tr>
<tr>
<td>Air exchange rate per hour (A/h)</td>
<td>1, 3, 6</td>
</tr>
<tr>
<td>Number of exposed days (n days)</td>
<td>1-60</td>
</tr>
<tr>
<td>Efficiency of a mask used by a infecter (%)</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Table 2 Values related to the efficacy of upper room UVGI

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Base value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_c(V_c+V_z)$: Volume of the room (m^3)</td>
<td>300×3</td>
</tr>
<tr>
<td>V_z: Volume of irradiated room (m^3)</td>
<td>300×0.9</td>
</tr>
<tr>
<td>V_L: Volume of nonirradiated lower room (m^3)</td>
<td>300×2.1</td>
</tr>
<tr>
<td>ν: Vertical air velocity of air [15, 16] (m/h)</td>
<td>Lognormal ($0.5, 0.5$)*</td>
</tr>
<tr>
<td>V/V_c: Air mixing rate inside room</td>
<td>($\nu \times 300 \times 3600)/V_L$</td>
</tr>
<tr>
<td>Z: UV sensitivity [12] ($\mu W/cm^2$)</td>
<td>Lognormal ($0.0024, 0.0023$)*</td>
</tr>
<tr>
<td>IR: UV irradiance [17] ($\mu W/cm^2$)</td>
<td>3</td>
</tr>
<tr>
<td>ΔK_{UV}^*: Ventilation rate equivalent to the efficacy of upper room air UVGI</td>
<td>Lognormal ($26.11, 25.19$)*</td>
</tr>
<tr>
<td>ΔK_{UV}^t: Ventilation rate equivalent to the efficacy of lower room air UVGI</td>
<td>Lognormal ($7.47, 6.85$)*</td>
</tr>
</tbody>
</table>

*The lognormal distribution is defined by the geometric mean and standard deviation, respectively.

ΔK_{UV}^* is calculated by the equation (3), and ΔK_{UV}^t is calculated by equation (4).

To investigate the effect of monthly exposure with the same room ventilation rate, the distribution of R_t was fitted to a log-normal distribution LN (3.66403, 1.74034) with median 3.37, and the distribution of R_{IO+M} was fitted to a log-normal distribution LN (3.81923, 1.64799) with median 3.59 for 30 days of exposure. Relationships between the medians of estimated probability distributions of R_t, R_{UV}, R_{UV+M}, and R_{IO+M} and months of exposure up to 2 months are shown in Fig. 3. The median of estimated probability distributions of R_t increased from 7.38 (15th day) to 11.72 (two month). The values of percent reduction of R_{UV}, R_{UV+M} and R_{IO+M} ranged from 52.4% (15th day) to 41.6% (two month), from 76.6% (15th day) to 68.3% (two month), and from 74.9% (15th day) to 63.0% (two month), respectively.

If $A = 1$, the distribution of R_t for 1 day of exposure was fitted to a log-normal distribution LN (1.68343, 1.71981) with a median of 1.65. The distribution of R_{UV} was fitted to a log-normal distribution LN (0.74299, 1.75384) that had a median of 0.74, the distribution of R_{UV+M} was fitted to a log-normal distribution LN (1.80944, 2.30491) that had a median of 0.18, and the distribution of R_{IO+M} was fitted to a log-normal distribution LN (0.38208, 1.77192) that had a median of 0.38 for 1 day of exposure. Relationships between the medians of estimated probability distributions of R_t, R_{UV}, R_{UV+M}, and R_{IO+M} and days of exposure in the room where ventilation rate was 1 ACH are shown in Fig. 1. The median of estimated probability distributions of R_t increased from 0.56 (first day) to 3.21 (sixth day) as baseline risk. The mean percent reductions with R_{UV}, R_{UV+M}, and R_{IO+M} were 55.2%, 78.4%, and 76.9%, respectively, from day 1 through day 6.
that the median $R_{UV,M}$ was lower than the median $R_{IO,M}$ during 6 days, and the difference between the median $R_{UV,M}$ and $R_{IO,M}$ increased with exposure days.

If room ventilation rate was 6 ACH, the distribution of R_R for 1 day of exposure was fitted to a log-normal distribution LN (0.27841, 1.77578) with a median of 0.06 for 1 day of exposure. The median of 0.12, the distribution of $R_{UV,M}$ was fitted to a log-normal distribution LN (0.08079, 1.83459) that had a median of 0.08, and the distribution of $R_{IO,M}$ was fitted to a log-normal distribution LN (0.06784, 1.77578) that had a median of 0.06 for 1 day of exposure. The relationships between the medians of estimated probability distributions of R_{UV}, $R_{UV,M}$, $R_{IO,M}$, and $R_{IO,UV}$ with days of exposure where ventilation rate was 6 ACH are shown in Fig. 4. The median of estimated probability distributions of R_R increased from 0.28 (first day) to 1.66 (sixth day) as baseline risk.

The mean percent reductions of R_{UV}, $R_{UV,M}$, and $R_{IO,M}$ were 55.6% and 71.6%, and 77.2%, respectively from day 1 through day 6. The median $R_{IO,M}$ was lower than the median of $R_{UV,M}$ during 6 days, and the difference between median $R_{UV,M}$ and $R_{IO,M}$ increased as exposure days passed.

The slopes of the change in median R_{UV}, $R_{UV,M}$, $R_{IO,UV}$, and $R_{IO,M}$ for a change in number of days of stay (Δ median R_{UV}, $R_{UV,M}$, $R_{IO,UV}$, and $R_{IO,M}$ / Δ days of exposure) were calculated for each ACH, and the relationships between the slopes and ACHs were investigated (Fig. 5). The slopes Δ median R_{UV}, $R_{UV,M}$, $R_{IO,M}$ with an air-exchange rate per hour (ACH) of 3. Filled diamonds denote the absence of intervention, filled squares denote the wearing surgical mask of an infector, filled triangles denote the use of upper-room UV light, and crosses denote the use of negative ionization.

Fig. 1 Relationship between days of exposure and median estimated probability distributions of R_R, R_{UV}, $R_{UV,M}$, and $R_{IO,M}$ with an air-exchange rate per hour (ACH) of 3. Filled diamonds denote the absence of intervention, filled squares denote the wearing surgical mask of an infector, filled triangles denote the use of upper-room UV light, and crosses denote the use of negative ionization.

Fig. 2 Relationship between days of exposure and median estimated probability distributions of R_R, R_{UV}, $R_{UV,M}$, and $R_{IO,M}$ with an air-exchange rate per hour (ACH) of 3. Filled diamonds denote the absence of intervention, filled squares denote the wearing surgical mask of an infector, filled triangles denote the use of upper-room UV light, and crosses denote the use of negative ionization.

DISCUSSION

In this study, we showed the additional percent reductions of $R_{UV,M}$ and $R_{IO,M}$ to the percent reduction of R_{UV} and the additional percent reductions of Δ median $R_{UV,M}$ and $R_{IO,M}$ / Δ days of exposure to the percent reduction of R_{UV} And the effect of $R_{UV,M}$ seemed to be the same as $R_{IO,M}$ when the ventilation rate was 3 ACH for 2 months. If the room ventilation rate was 1 ACH, the upper-room UV light was estimated to be more effective as exposure days increased. If the ventilation rate was 6 ACH, negative ionization was estimated to be the most effective as exposure days increased.

The rationale for using a simple surgical face mask on infected patients is based on the theory of droplet nuclei, but the lack of data on this potentially useful, commonly recommended, and low-risk method of TB
infectious source control. Dharmadhikari et al. [17] conducted a prospective study to evaluate the efficacy of surgical face masks worn by patients with MDR-TB in reducing transmission, and they showed 56% decreased risk of TB transmission from infectious patients. Even if surgical face mask was assumed to be worn by a coughing patient, TB infection risk remained with delay in TB case-finding from this result, and further control measures for TB transmission is required.

Reed [23] summarized the history of UVGI for air disinfection and reported that UVGI has recently received renewed interest, and safe and effective commercial products have been introduced. Ko et al. [15] showed that upper room UVGI reduced the mean annual new infection rate in a hypothetical hospital waiting room and that upper room UVGI was the most effective among additional ventilation and a high-efficiency particulate air filters using a cost-effectiveness analysis and a simulation model. Escombe et al. [14] showed that upper-room UV lights and negative air ionization prevented most airborne TB transmission using guinea pig air sampling. Fletcher et al. [24] exposed bacterial species to positive and negative ions to distinguish among effects arising from: (1) the action of the air ions; (2) the action of the electric field, and (3) the action of ozone, and indicated that the bactericidal action attributed to negative air ions was overestimated in previous reports. Escombe et al. [14] considered that the reduction of TB infection was mainly brought by the effect of negative air ions; however, this reduction may have been due to an overall effect that included other factors.

Sze-To and Chao [25] reviewed the methods of risk assessment of infectious respiratory diseases by comparing the Wells-Riley model and dose-response approaches and insisted the infectivity of the pathogen described in the quanta generation rate always refers to the infectivity of the pathogens in humans, as the quanta generation rate is back-calculated from the number of outbreak cases of the disease by the Wells-Riley model. Therefore, airborne TB infection risk for humans in an enclosed space can be extrapolated by using the quanta generation rate calculated backward from the guinea pig TB infection experiment.

In terms of the model for analysis of upper room UVGI systems, Riley, Permutt, and Kaufman [19, 26] built a two-zone transient model based on the experi-
mental data of artificial dissemination rates of a test organism (Serratia marcescens). Beggs and Sleigh [27] extended this model to be suitable for assessing UVGI systems for a wide range of ventilation conditions. Noakes et al. [28] compared the analytical mixing models with computational fluid dynamic (CFD) models to evaluate the effect of upper room UVGI systems. They reported that analytical mixing models reasonably gave good average zone concentrations. The original Riley and Permutt model [19] is suitable for estimating the effect of upper room UVGI systems under the assumption that the air-mixing rate in the room is only dependent on the vertical air velocity in this scenario.

Suzuki and Sone [1] reported that 90% of 40 facilities for elders undertook annual routine TB examinations, but most fee-based homes did not implement sufficient preventive measures against TB in a Tokyo metropolitan district. They observed that TB cases occurred in these fee-based homes, as a result of poor use of TB examinations. Shimouchi et al. [2] observed occasional TB patients, though residents had annual chest X-ray screening in 94% of 197 nursing homes in Osaka City. Patient delay was defined as the duration in days from the reported onset of symptoms to the first physician consultation [29]. Doctor delay was defined as the length of time between the first medical examination (including chest radiography, sputum smear, or sputum culture) to the diagnosis of pulmonary TB [29]. As TB diagnosis is difficult for the elderly due to non-specific appearances of signs/symptoms, X-ray shadows or negative tuberculin reaction tests, patient delay and doctor delay could easily have occurred [29]. They insisted that the strength of TB infection control measures in care facilities for the elderly was adequate. Okumura [3] and Kondo [4] reported exogenous reinfections at nursing home for the elderly, and insisted the cause of exogenous reinfections is that the elderly tend to be immunosuppressed by having dementia, other complications and malnutrition. Ito [5] reviewed the literatures on exogenous reinfection of TB in HIV-negative persons and Chiang and Riley [30] also reviewed exogenous reinfection, and both reviews showed the evidence supporting exogenous reinfection of TB.

The limitation of this study is that estimation of R_s did not consider the protection rate of already-infected persons, because data showing absolute risk and frequency of exogenous reinfection of TB have remained unavailable. Estimated R_s was based on the assumption that the protection rate of already-infected person was similar with that of BCG vaccination. Therefore, the estimation of R_s overestimated infection risk.

Additional control measure to case-finding and source-control is required in care facilities for the elderly having complications and malnutrition. Based on the results of this study, delay in TB case-finding produced TB infection risk, even if surgical face mask was assumed to be worn by a coughing patient, and negative air ionization may have the same effect at reducing the risk for TB as upper-room UV lights when the room ventilation rate is 3 ACH. The effect of upper-room UV lights seems to be predominant if the room ventilation rate is 1 ACH, and the effect of negative air ionization seems to be predominant if room ventilation rate is 6 ACH. Thus, environmental control measures such as UVGI and air ions seem to be effective under conditions in which adequate ventilation is not maintained.

In terms of upper room UVGI, sufficient laboratory information to develop guidelines is available [10]; however, less evidence is available regarding the reduction of TB infection by negative air ions. Further studies are needed to establish effective environmental control measures for TB transmission in elderly care facilities.

ACKNOWLEDGEMENTS

This work was supported by JSPS KAKENHI Grant Number 22590485.

CONFLICT OF INTEREST

This work was supported by JSPS KAKENHI Grant Number 22590485.

There are no other conflicts of interest to declare.

REFERENCES

2) Shimouchi A, Koda S, Ochiai H. Survey on nosocomial infection of tuberculosis in nursing homes for elderly in Osaka City.

![Fig. 5](image-url) Relationship between Δ median R_s, R_{Si}, R_{sAB}, and R_{pAB} / Δ days of exposure and air-exchange rate per hour. Filled diamonds denote the absence of intervention, filled squares denote the wearing surgical mask of an infector, filled triangles denote the use of upper-room UV light, and crosses denote the use of negative ionization.
Kekkaku. 2007; 82: 179-84. (in Japanese)

