Phase I Clinical Trial of Intravenous L-ascorbic Acid Following Salvage Chemotherapy for Relapsed B-cell non-Hodgkin’s Lymphoma

Hiroshi KAWADA1,2, Masakazu SAWANOBORI1, Mitsuyo TSUMA-KANEKO1,2, Izumi WASADA1, Mitsuki MIYAMOTO1, Hiromichi MURAYAMA3, Masako TOYOSAKI1, Makoto ONIZUKA1,2, Kosuke TSUBOI1, Kei TAZUME1, Yukari SHIRASUGI1, Ken OHMACHI1, Yoshiaki OGAWA3, Hiroyuki KOBAYASHI1 and Kiyoshi ANDO1,2

1Division of Hematology/Oncology, Department of Medicine, 2Research Center for Regenerative Medicine, 3Department of Pharmacology, Tokai University School of Medicine

(Received May 7, 2014; Accepted June 10, 2014)

Purpose: To determine the safety and the appropriate dose of intravenous L-ascorbic acid (AA) in conjunction with chemotherapy for patients with relapsed lymphoma.

Patients and Methods: Patients with relapsed CD20-positive B-cell non-Hodgkin’s lymphoma, who were going to receive the CHASER regimen as salvage therapy, were enrolled and treated with escalating doses of AA administered by drip infusion after the 2nd course of the CHASER regimen. The target plasma concentration immediately after AA administration was >15 mM (264 mg/dl).

Results: A serum AA concentration of >15 mM was achieved in 3 sequentially registered patients, all of whom had received a 75 g whole body dose. No obvious adverse drug reaction was observed in the patients. The trial was therefore successfully completed.

Conclusion: Intravenous AA at a whole body dose of 75 g appears to be safe and sufficient to achieve an effective serum concentration. A phase II trial to evaluate the efficacy of intravenous AA in relapsed/refractory lymphoma patients will now be initiated.

Key words: intravenous L-ascorbic acid, relapsed B-cell non-Hodgkin’s lymphoma, phase I clinical trial

INTRODUCTION

The relapse-free survival of patients who are initially diagnosed as having CD20-positive B-cell non-Hodgkin’s lymphoma (NHL) has been improved by the addition of rituximab to conventional CHOP chemotherapy [1-3]. However, the management of patients who suffer relapse of this disease requires additional therapeutic strategies.

Recently, intravenous administration of high ascorbic acid (AA) doses (high AA) has been shown to be a potential alternative cancer therapy. AA acts as an antioxidant and plays a key role in protecting cells against oxidative damage. Paradoxically, in the presence of Fe2+/Cu2+ ions, AA generates hydrogen peroxide (H2O2), a prooxidant [4]. High AA has been shown to exert remarkable anti-cancer effects through generating significant amounts of H2O2 in the extracellular fluid of tumor-bearing animals [5, 6], and recent clinical studies have also demonstrated that intravenous high AA has an antitumor effect in patients with a number of different cancers [7, 8]. Different routes of AA administration result in significantly different plasma concentrations, and intravenous administration results in a 70-fold higher plasma concentration than oral administration [9]. Furthermore, the cytotoxic effects of high AA appear to be specific to cancer cells, reflecting their relatively low catalase activity compared to normal cells [6]. We have also demonstrated that high AA effectively induces apoptosis in hematopoietic malignancies and represses hypoxia-inducible factor 1α (HIF-1α) expression in neoplastic cells, but not in normal hematopoietic progenitor and stem cells [10].

High AA is currently used worldwide, mainly by Complementary and Alternative Medicine practitioners [11]. However, most safety and efficacy information concerning high AA has been provided by them in the form of anecdotal accounts and case reports [7, 8, 12, 13]. Very few clinical trials of high AA have been performed to date [14], and, to our knowledge, there have been no clinical trials of high AA in Japan.

Accordingly, we conducted a phase I clinical trial of high AA in patients with relapsed NHL.

PATIENTS AND METHODS

Study population

This study was approved by the Clinical Research Review Committee of Tokai University School of Medicine. Patients with relapsed B-cell NHL expressing the CD20 antigen were enrolled onto this study. The other main inclusion criteria were that patients should be 20–75 years old, have an Eastern Cooperative Oncology Group performance score ≤2, an absolute neutrophil count ≥1,000/μL, a platelet count ≥100,000/μL, and adequate pulmonary, cardiac,
renal, and liver function. Each patient provided signed informed consent before enrollment.

AA preparation
In this study, we used MEGA-C-ACID PLUS® (500 mg/ml, Merit Pharmaceuticals, Los Angeles, California), a preservative-free AA preparation that was imported from the USA after approval by the Ministry of Health, Labour and Welfare, Japan (Yakkan certificate for import of medicines and medical devices). This source of AA was used because other clinical preparations in Japan contained preservatives, and there was no data regarding the safety of these substances when administered at high doses.

Study design
This was a phase I, open-label, dose-escalation study of AA. AA was given through a central vein catheter on days 7, 9, 11, 14, 16, and 18 during the 2nd course of the CHASER regimen (Fig. 1). A small test dose of 15 g AA in 250 ml Ringer’s lactate solution was administered at a rate of 0.5 g/min on day 7, and then 75 g of AA dissolved in 1,000 ml of distilled water was administered at a rate of 1 g/min on each of the other days listed above. Adverse drug reactions (ADRs) were assessed based on ADR grades defined by the Ministry of Health, Labour and Welfare, Japan. The dose-escalation scheme was guided by both the safety evaluation and the serum concentration of AA measured immediately after administration (Fig. 2).

Because hemolysis due to AA administration could occur in patients with a red cell glucose-6-phosphate dehydrogenase (G6PD) deficiency [15], G6PD activity was tested using a G6PD Assay Kit (Dojindo Laboratories, Kumamoto, Japan) according to the manufacturer’s protocol, on all patients before beginning AA infusion. In order to prevent hypocalcemia due to the chelating effect of AA, 0.5 g magnesium sulfate was added to every 500 ml of AA solution.

Target concentration (TC)
In healthy subjects the plasma AA concentration has been shown to peak immediately after intravenous administration of high AA, and then to decrease to approximately one fifth of this level within 4 hours due to rapid clearance [9]. Based on information supplied by Dr. Jeanne A. Drisko, the University of Kansas Medical Center, we initially decided upon a TC of ≥20 mM (350 mg/dl). However, it was previously found that the AA concentration needed to cause a 50% decrease in cell survival (EC50) was less than 5 mM for several cancer cell lines, including the lymphoma cell line JLP119, and was less than 15 mM for most of the other cancer cell lines tested [8]. Therefore, we reduced the TC from ≥20 mM (350 mg/dl) to ≥15 mM (264 mg/dl) after the beginning of this trial, after this change was approved by the Clinical Research Review Committee of Tokai University School of Medicine.

RESULTS
Three patients with relapsed B-cell NHL were enrolled in this study. The patients’ characteristics are shown in Table. The CHASER regimen was generally well tolerated, with hematologic toxicities being grade 3 neutropenia and grade 3 anemia and thrombocytopenia requiring transfusion in the 3 patients. Serum AA concentrations were measured just before the start of AA administration on day 7 of the 2nd course of the CHASER regimen, and were within the normal range (0.55–1.68 mg/dl) (Table). A small starting dose of 15 g AA was then administered, and no obvious ADRs were observed. Therefore, the AA dose was escalated to 75 g from day 9. Serum AA concentrations immediately after AA administration were measured on day 9, and the TC (≥15 mM) was achieved in all 3 patients (Table). We also measured the AA concentration immediately after AA administration on day 18 in 2 of the 3 patients, and reconfirmed that serum AA reached the TC (Table). There were no obvious adverse reactions caused by AA administration, including exacerbation of myelosuppression after the CHASER regimen.
Fig. 2 Trial schematic.
A whole body dose of 75 g L-ascorbic acid (AA) was administered in 3 sequential cases. The serum concentrations of AA measured on day 9 reached the target concentration (TC) and there were no grade 2 or worse adverse drug reactions (ADRs).
1.1% suffered ADRs, which were mostly minor, this limitation [9, 20, 21]. In the present study, the patients, elevated blood glucose in 2 patients, and vein concentrations of AA are severely limited when it is administered orally, even at the highest tolerated dose, and intravenous administration of AA can overcome this limitation [9, 20, 21]. In the present study, the plasma concentrations of AA increased more than 250-fold after intravenous administration of 75 g AA.

Other than the known complications of high AA in those with renal impairment or glucose 6 phosphate dehydrogenase deficiency, i.e., acute renal failure and severe hemolysis, high AA is reported to be remarkably safe [11]. Padayatty et al. assessed the ADRs of high AA in the USA in 2006 and 2008, and of 9,328 patients, 1.5 g/kg body weight of AA was well tolerated, and thus it may be possible to administer even higher doses, although this might be problematic due to the large volume and sodium load. Further, the 75 g whole body dose is very similar to that recommended previously by another group [14]. They reported that, based on a phase I clinical trial in patients with advanced malignancies including 4 lymphoma patients, 1.5 g/kg body weight of AA was well tolerated and should be adopted in future phase II trials.

We and other investigators previously demonstrated that high AA generated \(\text{H}_2\text{O}_2 \) extracellularly, and that this acted as a prooxidant, which selectively killed a number of different cancer cell types. The basis for this selective cell killing is thought to be the relatively low level of catalase activity in cancer cells compared to normal cells [10, 22, 23]. Furthermore, while HIF-1α plays an important role in the growth and survival of hematopoietic malignancies, we also found that the down-regulation of HIF-1α transcription mediates the growth inhibition of human leukemic cells by high AA, and is specific to malignant cells [10]. Therefore, high AA is considered to be a promising alternative therapy against cancers, including hematopoietic malignancies.

Despite reported successes, the anticancer effects of high AA vary among cancers and patients [5, 8, 14]. The number of neoplastic cells or normal erythrocytes and fibroblasts around neoplastic cells inversely correlates with the efficacy of high AA due to the correspondingly increased catalase activity against \(\text{H}_2\text{O}_2 \) [24]. We have also observed this phenomenon in our experimental model (unpublished observation). Therefore, a combination of high AA and other anticancer drugs that compensate for \(\text{H}_2\text{O}_2 \) decomposition could be a better strategy for eliminating cancer cells.

We are currently planning a phase II study to assess the efficacy of this combination therapy in patients with relapsed/refractory lymphomas.

Table: Patient characteristics and measurement of plasma AA concentration

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>60</td>
<td>72</td>
<td>57</td>
</tr>
<tr>
<td>Sex</td>
<td>Female</td>
<td>Male</td>
<td>Male</td>
</tr>
<tr>
<td>Performance status</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Histology</td>
<td>MCL</td>
<td>MCL</td>
<td>DLBCL</td>
</tr>
<tr>
<td>Stage at study entry</td>
<td>IVa</td>
<td>IVa</td>
<td>IIIa</td>
</tr>
<tr>
<td>Previous therapy</td>
<td>Hyper-CVAD</td>
<td>R-CHOP</td>
<td>R-CHOP+irradiation</td>
</tr>
<tr>
<td>Plasma AA concentration</td>
<td>0.72</td>
<td>1.01</td>
<td>1.16</td>
</tr>
<tr>
<td>On day 7</td>
<td>313.5</td>
<td>339.0</td>
<td>302.1</td>
</tr>
<tr>
<td>On day 18</td>
<td>447.3</td>
<td>344.1</td>
<td>not measured</td>
</tr>
</tbody>
</table>

MCL, mantle cell lymphoma; DLBCL, diffuse large B-cell lymphoma. Hyper-CVAD consists of cyclophosphamide, vincristine, doxorubicin, dexamethasone, methotrexate, and cytarabine, R-CHOP consists of rituximab, cyclophosphamide, vincristine, doxorubicin, and prednisolone.

*Plasma \(\text{t-ascorbic acid} \) (AA) concentration (mg/dl) was measured on day 7 immediately prior to administration, on day 9 immediately after administration, and optionally on day 18.

H. KAWADA et al. / Intravenous \(\text{t-ascorbic Acid} \) in Relapsed Lymphoma
DISCLOSURE OF POTENTIAL CONFLICTS OF INTEREST

The authors have no potential conflicts of interest to disclose.

ACKNOWLEDGEMENTS

The authors thank the patients, doctors, and nurses who participated in this trial.

REFERENCES

