Progressive Multifocal Micronodular Pneumocyte Hyperplasia in the Lungs of a Patient with Tuberous Sclerosis Complex: A Case Report

Tetsuya URANO*, Naoki HAYAMA*, Jun TANAKA†, Yukihiro HORIZO†, Masako SATO†, Shigeki HATTORI†, Genki TAKAHASHI†, Fumimari TAKAHASHI†, Tomoe TAKEUCHI†, Kazuki HARADA†, Hiroto TAKIGUCHI†, Hiromi TOMOMATSU‡, Katsuyoshi TOMOMATSU‡, Takahisa TAKIHARA‡, Kyoko NIIMI‡, Tsuuyoshi OGUMA‡, Takuya AOKI‡, Go OGURA‡, Naoya NAKAMURA‡ and Koichiro ASANO‡

*Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine
‡Department of Pathology, Tokai University School of Medicine

(Received September 20, 2016; Accepted October 3, 2016)

We report a case of multifocal micronodular pneumocyte hyperplasia (MMPH) in a patient with tuberous sclerosis complex, in whom the lung nodules increased in the number and size over the course of 8 years. We diagnosed MMPH following a lung biopsy performed during video-assisted thoracic surgery. In most of the previously reported cases, the number and size of lung nodules is unchanged during the clinical course. Our case is the first report of progressive disease in pathologically proven MMPH.

Key words: Multifocal Micronodular Pneumocyte Hyperplasia, Tuberous Sclerosis Complex, Multiple Ground Glass Opacities

INTRODUCTION

Tuberous sclerosis complex (TSC) is an autosomal-dominant disease caused by a mutation in either the TSC1 or TSC2 gene [1, 2]. Hamartomatous lesions develop in various organs such as the skin, retina, kidney, central nervous system, heart, and lungs [3]. Lymphangioleiomyomatosis (LAM) and multifocal micronodular pneumocyte hyperplasia (MMPH) produce cystic and nodular disease, respectively, in the lungs of patients with tuberous sclerosis [4]. The frequency of LAM in females is significantly higher than in males. However, MMPH has no association with gender [5]. In MMPH, multiple pulmonary nodules composed of benign alveolar type II cells are found scattered throughout the lung [6]. In most of the previously reported cases, the number and size of lung nodules remains unchanged during the clinical course [7, 8]. Here, we report a case of MMPH in a patient with tuberous sclerosis complex, in whom the lung nodules increased in the number and size during the course of 8 years.

CASE REPORT

A 35-year-old woman was referred to the pulmonary clinic in Tokai University Hospital for the evaluation of multiple ground glass opacities (GGO) in the lungs. She had a history of epilepsy in childhood. Multiple pulmonary nodules (Fig. 1a) were first identified on the chest computed tomography (CT) at age 27 during systemic evaluation for a uterine tumor of 10 cm in diameter; enucleatic myomectomy following the administration of a luteinizing hormone-releasing
Fig. 1  a) Tiny ground glass opacities (GGOs) were seen on the chest computed tomograph when the patient was 27 years old. b) The number and size of pulmonary GGOs were increased when she was 32 years old. c) The size of the pulmonary GGOs were further increased at 35 years of age.

Table  Pulmonary function test

<table>
<thead>
<tr>
<th>Spirometry</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vital capacity</td>
<td>3.14 L</td>
</tr>
<tr>
<td>Vital capacity, %predicted</td>
<td>94.9%</td>
</tr>
<tr>
<td>FEV&lt;sub&gt;1&lt;/sub&gt;</td>
<td>2.65 L</td>
</tr>
<tr>
<td>FEV&lt;sub&gt;1&lt;/sub&gt;/forced vital capacity</td>
<td>89.2%</td>
</tr>
</tbody>
</table>

Arterial blood gas analysis

| pH                               | 7.394 |
| PaCO<sub>2</sub>                  | 36.0 Torr |
| PaO<sub>2</sub>                   | 92.3 Torr |
| [HCO<sub>3</sub>-]                | 21.5 mEq/L |
| A-aDO<sub>2</sub>                 | 14.3 Torr |

* FEV<sub>1</sub> = Forced expiratory volume in one second

Fig. 2  a) In the low power view with a hematoxylin and eosin (HE) stain, multiple nodular lesions, up to 5 mm in size, appeared in a random distribution with no tendency to attach to bronchioles or blood vessels. b) In the high power view with a HE stain, the nodular lesions consisted of cuboidal cells with round to irregular nuclei, occasional intranuclear cytoplasmic inclusion, and eosinophilic cytoplasm. These cells proliferated along the alveolar wall, without any invasive or destructive growth.
sideration of the histology and clinical features, the pulmonary lesions were diagnosed as MMPH.

The lung nodules increased in number and size. But she is still fine and she has no symptom by no treatment, when she is 39 years old now.

**DISCUSSION**

We report a case with tuberous sclerosis who exhibited skin lesions, subependymal nodules in the brain, renal angiomylipomata, a pancreatic endocrine tumor, and multiple lung nodules. The lung nodules were diagnosed as MMPH following biopsy after gradual progression over the course of 8 years.

The time course of disease presentation and progression in tuberous sclerosis varies between the affected organs. Neuropsychiatric lesions are seen from the infancy, with seizures beginning in the first year of life in over 60% of cases [9]. Brain magnetic resonance imaging shows cortical glioneuronal hamartomas and subependymal nodules in approximately 90% of children with TSC [10]. Renal angiomylipomas were present in 37% of the children between 1 and 5 years old and in 41% of boys and 63% of girls after 5 years of age [11]. In contrast, skin lesions tend to increase in size and number through puberty and then tend to be stable over time, although there is considerable variation in the age of expression. Hypomelanotic macules and forehead fibrous plaques appear earlier than facial angiofibromas and ungual fibromas [12].

Cystic lesions in the lungs increase with age in the adulthood as in the cases with sporadic LAM, rising by about 8% per year. LAM had a prevalence of 27% in subjects < 21 years old and 81% in subjects > 40 years old [13]. On the contrary, little is known about the development and progression of MMPH lesions.

Age at the diagnosis of MMPH has ranged between 13 and 63 years in reporte cases [7, 8], with MMPH identified in the present case identified when the patient was 27 years old. Several reports have examined the progression of MMPH longitudinally. Twenty-two cases with three or more ground glass opacities in the lung showed no change in the number or size of nodules when re-examined 0.9–4.9 years later [8]. Another report followed up 15 Japanese patients for a period ranging from 6 months to 13 years, finding no change in the number or size of MMPH lesions [7]. The only exception is a report of a 33-year-old woman with tuberous sclerosis, whose small nodules in the lung increased in number during pregnancy [14], although the case lacked a definitive pathological diagnosis. Our case is, therefore, the first report of progressive disease in pathologically proven MMPH. It may be possible that MMPH appears and progresses in the second to third decades of life and then stabilizes, similar the skin lesions of TSC.

We reported a rare case of MMPH in a patient with TSC, in whom the lung nodules increased in number and size. However, if instances of MMPH in patients with TSC are observed during a longer period, we may discover other progressive cases. The accumulation of future data is awaited.

**REFERENCES**


12) Webb DW, Clarke A, Fryer A, Osborne JP. The cutaneous fea-

13) Gomez MR, Sampson JR, Whitt

14) Ogawa R, Miyagawa M, Iide K, Akamune A, Ohtsuki Y, Mochizuki T. Exacerbation and remission of pulmonary mic