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The aim of this study is to evaluate the feasibility of NOD/Shi-scid-IL2Ry"" (NOG) mice transplanted with
human CD34*/CD38 /Lin”"** hematopoietic cells from cord blood (CB) as an experimental model of the gene
expression in human hematopoiesis. We compared the gene expressions of human CD34*/CD38°/Lin”""
cells from human bone marrow (BM) and in xenograft models. The microarray data revealed that 25 KEGG
pathways were extracted from the comparison of human CD34‘/CD38/Lin”"** HSCs between CB and BM,
and that 17 of them—which were mostly related to cellular survival, RNA metabolism and lymphoid devel-
opment—were shared with the xenograft model. When the probes that were commonly altered in CD34*/
CD38/Lin”"" cells from both human and xenograft BM were analyzed, most of them, including the genes
related hypoxia, hematopoietic differentiation, epigenetic modification, translation initiation, and RNA
degradation, were downregulated. These alterations of gene expression suggest a reduced differentiation
capacity and likely include key alterations of gene expression for settlement of CB CD34*/CD38/Lin”"*" cells
in BM. Our findings demonstrate that the xenograft model of human CB CD34*/CD38 /Lin”'" cells using
NOG mice was useful, at least in part, for the evaluation of the gene expression profile of human hemato-

poietic stem cells.
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INTRODUCTION

The hematopoietic system is important for the main-
tenance of the systemic oxygen supply and immunolog-
ical surveillance. In humans, it initially appears in the
second week of fetal life in the yolk sac as primitive
hematopoiesis. It then moves to the aorta-gonad-meso-
nephros (AGM) region, where definitive hematopoiesis
develops at four to six months of fetal life. The fetal
liver takes over the hematopoietic function after that,
and at birth, hematopoietic stem cells (HSCs) move to
the bone marrow through the blood stream and settle
there for lifetime hematopoiesis [1-5].

Human HSCs maintain the definitive hematopoietic
system. They are characterized by multipotency and
self-renewal and provide all of the hematopoietic lin-
eage cells, including lymphoid and non-lymphoid cells,
for the body’s lifetime. Their cellular immunopheno-
type is characterized as CD34*/CD38"*/CD59*/CD90
(THY1)*/CD117 (KIT)*/CD133*/CD135 (FLT3)*/
CD164*/CD338"/GATA2"/TdT*/Lin" [6-12]. They are
located in the niche region of the bone marrow, which
provides an adequate environment for maintaining
their cellular stemness through direct interaction and
the function of various kinds of secreted cytokines [13,
14].

The characterization of HSCs and studies on he-
matopoietic system require in vivo evaluations. The
development of NOD/Shi-scid-IL2Ry™" (NOG) mice,
which lack any functions of NK dendritic cells or T
or B cell immunity, by crossing NOD-scid mice with
an IL2Ry-knockout background has facilitated such
evaluations, due to the high efficiency of human HSC
engraftment [15, 16]. Cord blood (CB) contains young
human HSCs that move to the bone marrow through
the blood stream at birth and is the most primitive of
the available HSC sources. Therefore, NOG mice trans-
planted with CB-HSCs are believed to be a suitable
experimental model for evaluating the development of
human hematopoiesis [17-22].

In the present study, to evaluate the feasibility of this
xenograft model with particular focus on gene expres-
sion alterations, we compared the microarray data of
human CD34*/CD38-/Lin”"" cells from bone marrow
(BM) and xenograft serial transplantation models with
CB CD34*/CD38/Lin""" cells.

MATERIALS AND METHODS

1. Materials

The use of CB obtained from full-term deliveries
was approved by the Tokai University Committee
on Clinical Investigation (Permit number: #121-46).
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These CB samples were used for the xenograft exper-
iments described below (Permit numbers: #101-24 and
#111026). The BM samples were utilized, in accordance
with the approval of the Tokai University Committee
on Clinical Investigation (Permit number: #14I-15).

2. Preparation of CD34*/ CD38-/ Lin""*" cells
Human CD34*/CD38 /Lin”" cells were prepared
from pooled CB and BM in accordance with the meth-
od of our previous report, with minor modifications
[18, 19]. Briefly, they were initially prepared using the
CD34 Progenitor Cell Isolation Kit (Miltenyi Biotec,
Sunnyvale, CA, USA). These cells were then stained
with allophycocyanin (APC)-conjugated anti-CD45
mADb (Coulter/Immunotech, Marseille, France),
and fluorescein isothiocyanate (FITC)-conjugated
anti-lineage-specific antigens; CD2, CD3 (UCHTI),
CD41 (P2), glycophorin A (11E4B-7-6), CD14 (MfP9),
CD19 (§J25C1), and CD56 (NCAM16.2) (all from BD
Biosciences, San Jose, CA, USA), phycoerythrin (PE)-
conjugated anti-CD38 (HB7; BD Biosciences), and
phycoerythrin-Texas Red (ECD)-conjugated anti-CD34
(581; Coulter/Immunotech) mAbs. The CD34*/
CD38/Lin”""/CD45" cells were fractionated using the
FACSVantage™ flow cytometer (BD Biosciences).

3. Transplantation of CD34*/CD38/Lin""" cells in
a xenograft mouse model

NOG mice were obtained from the Central
Institute for Experimental Animals (Kawasaki, Japan)
and maintained in the animal facility of the Tokai
University School of Medicine in microisolator cages.
Nine- to 20-week-old NOG mice were irradiated with
220 c¢Gy of X-rays. A total of 10,000 sorted human
CD34*/CD38/Lin”"" cells were injected into the ret-
ro-orbital plexus of the NOG mice the day after irra-
diation [18, 19]. The mice were sacrificed at 18 weeks
after transplantation. BM cells were harvested, and
human hematopoietic cells were distinguished from
mouse cells by the expression of human CD45. CD34"/
CD38-/Lin”"" cells isolated from the pooled BM cells
of three recipient mice were used for the microarray
analysis. For serial transplantation, human CD34" cells
from the primary transplantation (1 x 10° cells per
recipient) were injected intravenously into irradiated
secondary NOG recipients.

4. RNA extraction and microarray analysis

After FACS sorting, cells were pelleted by centrif-
ugation at 300 x g in RNase-free, 1.5-ml microcen-
trifuge tubes. The pellets were disrupted by vigorous
pipetting in 350 pl of Lysis Buffer RLT (Qiagen,
Valencia, CA, USA). Total RNA was extracted using
the RNeasy Mini-Kit (Qiagen) in accordance with the
manufacturer’s RNA Purification protocol. The cDNA
was synthesized and labeled from 50 ng of total RNA
from each sample using a Two-Cycle cDNA Synthesis
kit and the IVT Labbering kit (Affymetrix, Santa
Clara, CA, USA) to produce targets for hybridization
to Affymetrix Human Genome U133 Plus 2.0 Array
GeneChip microarrays (Affymetrix) in accordance
with the manufacturer's instructions.

Raw signal data were processed and analyzed using
the GeneSpring GX software program (version 13.0,

Agilent Technologies, Santa Clara, CA, USA). The
background subtraction, normalization, and log base 2
transformation of gene signals were carried out using
the robust multi-array analysis (RMA) summarization
algorithm [23].

The probes demonstrating an expression level of
>80% expression after normalization in each set of
the gene expression profiles were selected to detect the
differential gene expression. The lists of genes whose
expression significantly changed in the two compared
groups were analyzed by DAVID bioinformatics
resources 6.7 (https://david.ncifcrf.gov) to determine
whether or not they included a specific pathway in the
KEGG database (http://www.genome.jp/kegg/pathway.
html)

RESULTS

1. Study strategy

The strategy of this study is shown in Fig. 1. The
human CD34*/CD38/Lin”"" cells from CB were
transplanted twice and collected from the xenograft
BM at the steady state at each transplantation (18
weeks after transplantation). The CD34*/CD38-/Lin”
v cells from the human BM were also separated. The
gene expression profiles (GEPs) in these cells were
evaluated and compared.

2. Selection of human CD34*/CD38 /Lin”'*" cells
from the xenograft model and primary samples

The frequency of CD34*/CD38 /Lin”"" cells in
CD34" cells from the original CB was 23.08% + 4.49%
(n =3). A total of 10,000 human CD34*/CD38/
Lin”"" cells were infused into NOG mice at the first
transplantation, and the frequency of CD34/CD38/
Lin”*" cells in the xenograft BM was 1.53% + 0.31%
(n = 3) at 18 weeks after transplantation. In the second
transplantation, the number of infused human CD34*
cells was 1 x 10°, and their frequency in the xenograft
BM was sustained at a comparable level, 1.20% + 0.84%
(n=3) at 18 weeks after the second transplantation (Fig.
2).

The cells from human BM without myeloid diseases
were also sorted using the same strategy. The frequen-
cies of the CD34*/CD38/Lin”"" fraction in human
BM CD34* hematopoietic progenitors from 3 cases
were 0.92%, 2.94%, and 15.49%, respectively.

3. Preparation for analyzing the GEPs

The microarray analyses were performed using
these human CD34*/CD38 /Lin”"" cells, and their
GEPs were obtained in the original CB (A), at 18
weeks after the first transplantation in the xenograft
model (B), at 18 weeks after the second transplantation
in the xenograft model (C), and in the human BM (D).
The cell numbers applied for the analysis were 1.0 x 10°
per sample from CB and the xenograft models, and
2.7 x 10%, 6.9 x 10%, and 1.3 x 10%, respectively, from the
3 cases.

The probes for analyzing the GEPs were initially
filtered by their expression, and the 34,106 probes
whose expression was above 80% in all 4 backgrounds
were selected for the subsequent comparison of GEPs
to identify genes in which the expression was clearly
altered by excluding low-expressing genes. The pri-
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Fig. 1 Experimental design of this study. Cell samples were obtained from cord blood (A), and the bone marrow was
obtained from xenogranft models (B and C) and human samples (D). Human CD34'/CD38/Lin" cells were frac-
tioned from these sources, and gene expression analyses were performed.
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Fig. 2 Collection of human CD34*/CD38/Lin”** CB and BM cells from the xenograft model. The target fraction was
sorted for microarray analyses using a FACSVantage™ flow cytometer.
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Fig. 3 Primary component analyses of the microarray data. The microarray data from (A) to (D) were
separated by their backgrounds.
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Fig. 4 Identification of KEGG pathways in the comparison between each pair of
microarray data from (A) to (D).

mary component analysis (PCA) revealed that the
selected probes clustered the GEP according to their
backgrounds (Fig. 3).

4. Comparison of GEP

The comparison between the GEP data sets of
human HSCs in the current study was performed as
follows: (A) vs. (B) and (A) vs. (C) for the evaluation
of the alteration of CB-HSCs in xenograft BM; (B) vs.
(C) for the development and/or aging of CB-HSCs in
xenograft BM; and (A) vs. (D) for their difference in
HSCs between CB and BM. The numbers of probes
representing the genes that were differently expressed

between the compared GEP pairs (more than 2-fold
changes) were as follows: 6,582 between (A) vs. (B),
6,834 between (A) vs. (C), 10,886 between (B) vs. (C),
and 12,327 between (A) vs. (D). These gene lists were
then applied to the KEGG pathway analysis using
DAVID bioinformatics resources 6.7. The numbers of
identified KEGG pathways identified from (A) vs. (B),
(A) vs. (C), (B) vs. (C) and (A) vs. (D) were 24, 27, 17
and 25, respectively (Fig. 4).

The categories of identified KEGG pathways in each
gene list are shown Fig. 5A and B. There were three
common pathways among these comparisons. In addi-
tion, the 14 pathways extracted by the comparison be-
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tween CB and human BM, (A) vs. (D), were also found
in the comparison between CB and xenograft BM, (A)
vs. (B), (A) vs. (C), and (B) vs. (C). In total, 17 of the
25 pathways (68%) extracted from (A) vs. (D) were
identified based on comparisons with the xenograft
model. In particular, 16 of these 17 pathways were
shared with (A) vs. (B) and (A) vs. (D), in contrast to
(A) vs. (C) (10 pathways) and (B) vs. (C) (7 pathways) .
These 16 pathways accounted for 67% of the pathways
extracted from (A) vs. (B).

The 17 pathways included 4 cellular growth-related
pathways —“Apoptosis”, “Cell cycle”, “MAPK signaling
pathway”, and “pb53 signaling pathway’—and 2 RNA
metabolism-related pathways —“RNA degradation”
and “Spliceosome”. There were also 3 tumor-related
pathways: “Chronic myeloid leukemia”, “Prostate can-
cer”, and “Colorectal cancer”. They commonly included
the pathways on general cellular biology, such as
“Apoptosis”, “Cell cycle”, “MAPK signaling pathway”,
and “p53 signaling pathway”, which were independent-
ly identified as described above, and “PI3K-Akt sig-
naling pathway”, which was not identified as a single
pathway. These specific tumor-related pathways also
include their characteristic pathways: “TGF-p signaling
pathway” for “Chronic myeloid leukemia”, “Cytokine-
cytokine receptor interaction”, and “Androgen and
estrogen metabolism” for “Prostate cancer”, and “Wnt
signaling pathway” and “TGF-f signaling pathway”
for “Colorectal cancer”. Additionally, there were three
pathways related to neurodegenerative disorders:
“Alzheimer’s disease”, “Huntington’s disease”, and
“Parkinson’s disease”. They shared “Apoptosis” and
“Oxidative phosphorylation”. “Alzheimer’s disease” and
“Huntington’s disease” also share “Calcium signaling
pathway”, and “Huntington’s disease” and “Parkinson’s
disease” share “Proteasome”. Furthermore, “T cell re-
ceptor signaling pathway” and “B cell receptor signal-

(A) vs (B)

ing pathway”, which include major cellular signaling
pathways, were also identified. These pathways, which
are related to cellular survival, RNA metabolism, and
lymphoid development, might be related to changes in
the properties of human CD34*/CD38/Lin”"" cells.

There were eight pathways identified only in the
data comparison from xenografts, and all of them
were shared with (B) vs. (C), suggesting that these
pathways were uniquely related to the development
and maintenance of human CD34*/CD38 /Lin”'"¥
cells in the xenograft model. They included the path-
ways related to the electron transport chain, protein
degradation, and DNA repair, such as “Oxidative
phosphorylation”, “Proteasome”, “Ubiquitin mediated
proteolysis”, “Ribosome”, “DNA replication”, “Nucleotide
excision repair” and “Pyrimidine metabolism”.

There were also proper pathways in each compari-
son. The numbers of specific pathways in (A) vs. (B),
(A) vs. (C), (B) vs. (C) and (A) vs. (D) were 3, 12, 2,
and 8, respectively. The specific pathways extracted
from the comparison of CB and human BM, (A) vs.
(D), were as follows: “Adherens junction”, “Fc gamma
R-mediated phagocytosis”, “Focal adhesion”, “Insulin
signaling pathway”, “Lysosome”, “Phosphatidylinositol
signaling system”, “Regulation of actin cytoskeleton”,
and “SNARE interactions in vesicular transport”.
Except for “Insulin signaling pathway”, including
“Phosphatidylinositol signaling system” and “MAPK
signaling pathway”, these are single pathways that are
related to fundamental cellular functions, such as ad-
hesion, cytoskeleton, and lysosomal function.

5. Genes whose expression was commonly altered
in BM CD34*/CD38 /Lin""" cells from both human
and xenograft models

The expression of 10 and 321 probes was commonly
up- or downregulated over 5-fold in comparison to CB

(A) vs (D)

Fig. 5 The common KEGG pathways identified by the compari-
son between each pair of microarray data from (A) to (D).
A Venn diagram (A) and a list of the common pathways

(B) are shown.
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CD34/CD38/Lin”™" cells (A) in BM CD34/CD38/
Lin”"" cells from human (D) and xenograft models (B),
respectively (Fig. 6). We were able to clearly classify (B)
and (D) from (A). Most of these probes were downreg-
ulated (97% in total 331 probes). The 10 upregulated
probes included MYC and MUM!I, transcription factors
for differentiation of B and T cells.

The expression of 57 probes was commonly altered
(all down-regulated) over 10-fold in (B) and (D) in
comparison to (A) (Fig. 7). They included the hypox-
ia-related gene HIFIA; the nucleoporin family gene
NUP98, which has been found to be rearranged in
leukemic cells; the genes related to hematopoietic dif-
ferentiation such as BCL6 and CSF2RB; the genes relat-
ed to cellular proliferation such as AZINI, BIGI, BIG3,
RITI, and RPRDIA; the epigenetic modifiers such as
KMT2A (also known as MLL), [MJDIC, and CHDI; the
ubiquitination-related genes such as PELII, RANBP2,
RNFI11, and UBAG6; the genes related to translation
initiation and RNA degradation such as DCPIA and
MEX3C; and the genes related to the ER and Golgi
function such as CLNS, HSPAS5, SEC24A, and WHAMM.

The genes extracted from the comparison revealed
the differences in the characteristics of human CD34*/
CD38 /Lin”"" cells between BM and CB at the mo-
lecular level and may reflect the differences in their
biological properties as well, including cellular prolifer-
ation and differentiation.

DISCUSSION

In the current study using NOG mice, we extracted
25 KEGG pathways by the comparison of human
CD34/CD38/Lin”"" cells between CB and BM, and
17 of them were shared with the xenograft model.
These extracted pathways included pathways related
to cellular survival, RNA metabolism, and lymphoid
development. In addition, most of the altered gene ex-
pressions that were shared with CD34*/CD38/Lin”""
cells both in human and xenograft BM were downreg-
ulated in comparison to CB, including genes related to
hypoxia, hematopoietic differentiation, epigenetic mod-
ification, translation initiation and RNA degradation.
We suspect that these genes had key alterations in the
gene expression for settlement of CB CD34*/CD38/
Lin7*" cells in BM.

A number of studies have proven the feasibility of
the xenograft model using NOG mice for the evalua-
tion of normal and malignant human hematopoiesis
[15, 17-21, 24-34]. The advantages of the system
include the availability of the phenotypes within a
relatively short time period, because of the defective
immune systems and forced proliferation by transplan-
tation. However, the resultant phenotypes as well as
gene expression may be enhanced or modified simul-
taneously in the environment of xenograft; although
human HSCs exhibit myeloid differentiation, they
dominantly develop into B-cells. Our data may have
reflected the reproducibility and inconsistency seen in
the xenograft model.

Sixteen out of 17 KEGG pathways shared with
CD34*/CD38/Lin”"*" cells in the human and xeno-
graft models were identified in the first transplan-
tation model. In contrast, only one KEGG pathway
was shared with (A) vs. (D) and (A) vs. (C) suggesting

that a single transplantation was sufficient to induce
changes due to aging, as seen in human BM, because
the BM samples were obtained from elderly patients.
Repeated transplantation caused additional changes
in the gene expressions, resulting in the identification
of 8 KEGG pathways from the (B) vs. (C) comparison
that were related to fundamental cellular functions,
such as cellular metabolism, but these KEGG pathways
were not identified in (A) vs. (D). In addition, the 8
unique KEGG pathways in (A) vs. (D) included those
related to cell adhesion. It is therefore possible that
these alterations in gene expression were exaggerated
in the adaptation and survival of human CD34*/
CD387/Lin”"" cells to the xenograft environment.

All of the gene expressions in CD34/CD38/Lin”""
cells both from human and xenograft BM commonly
altered over 10-fold compared with that from CB were
downregulated. These genes included HIFIA, a master
transcriptional regulator activated under hypoxic con-
ditions. Previous studies have shown that the oxygen
concentration is especially low in CB (20-30 mmHg
in umbilical vein, 10-15 mmHg in umbilical artery)
[35, 36], although some studies have shown the oxygen
concentration to be about 20 mmHg [37]. The down-
regulation of HIFIA might therefore validate our array
data. The observed upregulation of MYCI, which was
found to be over 5-fold in the analysis of the common-
ly altered expression, also support our data, as MYC
expression is inhibited by hypoxia [38]. Interestingly,
the global repression of genes was observed in the
non-neoplastic CD34*/CD38/Lin”"" cells in spite of
the occurrence of MYC upregulation, which has been
reported to induce either global or specific gene ex-
pressions in cancerous cells [39].

There were also several genes related to hematopoi-
esis and leukemogenesis among the downregulated
genes. KMT?2A, also known as MLLI, encodes a tran-
scriptional coactivator with histone H3 lysine 4 (H3K4)
methyltransferase activity, which plays an essential
role in normal hematopoiesis [40, 41]. MLLI is often
involved in chromosomal translocation in leukemic
cells to generate MLLI chimeric genes. [MJDIC, a pu-
tative histone demethylase that acts as a coactivator but
lacks histone demethylase activity, has been reported to
maintain leukemic stem cells with MLLI-AF9 and also
exerts similar effects on normal hematopoietic stem
cells, albeit to a lesser extent [42, 43]. CSF2RB encodes
the common B-chain of human cytokine receptors
such as GM-CSF, IL-3 and IL-5 [44]. BCL6, which is
frequently translocated and hypermutated in diffuse
large B-cell lymphoma, is a master transcription factor
that promotes the development of normal B-cells and
follicular helper T-cells [45, 46]. The expression of
genes associated with the initiation of transcription,
RNA degradation, and the functions of the endo-
plasmic reticulum and Golgi apparatus, which are
required for the generation of proteins for cellular
functioning, were also suspected to be repressed. The
downregulation of these genes may be related to re-
pression of stem cell function as well as hematopoietic
differentiation.

However, the interpretation of the decreased ex-
pression of genes related to cellular proliferation and
survival is controversial; AZIN1 has been reported to
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Fig. 6 The expression profile of 331 genes whose expression was commonly altered in CD34*/CD38/Lin”"" cells from
human and xenograft bone marrow in comparison to those from cord blood (more than 5-fold).
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Fig. 7 The expression profile of 57 genes whose expression was commonly altered in CD34'/CD38/Lin”"" cells from
human and xenograft bone marrow in comparison to those from cord blood (more than 10-fold).

be associated with increased proliferation [47]. RIT1,
a member of the RAS subfamily of small GTPases,
has been found to be important for cellular survival
in response to oxidative stress. Mutations in RITI
have been reported in myeloid malignancies and
lung adenocarcinoma [48, 49]. In contrast, BTG1 and
BTG3 are members of the BTG/Tob family, which
have anti-proliferative properties [50, 51]. RPRDIA
has been reported to be a negative regulator of G1/S
phase progression by interacting with INK4B as well
as a transcriptional repressor by inhibiting the Wnt/
B-catenin signal-mediated gene transcription [52, 53].
MYC upregulation was detected, but the MYC function
is precisely regulated by ARF and TP53 in non-can-
cerous cells [54], in sharp contrast to the uncontrolled
proliferation in cancerous cells [39].

In summary, our findings demonstrated that hu-
man CB CD34"/CD38-/Lin”"" cells adapted to the BM
microenvironment in human and xenograft models
similarly, with a shared reduced gene expression, and
that the xenograft model of human CD34*/CD38/
Lin”"*v cells using NOG mice was useful, at least in
part, for the evaluation of the gene expression in hu-
man hematopoietic stem cells.
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