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Objective: We aimed to identify new biomarkers in Diffuse Large B-cell Lymphoma (DLBCL) using the deep 
learning technique. 
Methods and Results: The multilayer perceptron (MLP) analysis was performed in the GSE10846 series, di-
vided into discovery (n = 100) and validation (n = 414) sets. The top 25 gene-probes from a total of 54,614 were 
selected based on their normalized importance for outcome prediction (dead/alive). By Gene Set Enrichment 
Analysis (GSEA) the association to unfavorable prognosis was confirmed. In the validation set, by univar-
iate Cox regression analysis, high expression of ARHGAP19, MESD, WDCP, DIP2A, CACNA1B, TNFAIP8, 
POLR3H, ENO3, SERPINB8, SZRD1, KIF23 and GGA3 associated to poor, and high SFTPC, ZSCAN12, LPXN 
and METTL21A to favorable outcome. A multivariate analysis confirmed MESD, TNFAIP8 and ENO3 as risk 
factors and ZSCAN12 and LPXN as protective factors. Using a risk score formula, the 25 genes identified two 
groups of patients with different survival that was independent to the cell-of-origin molecular classification 
(5-year OS, low vs. high risk): 65% vs. 24%, respectively (Hazard Risk = 3.2, P < 0.000001). Finally, correlation 
with known DLBCL markers showed that high expression of all MYC, BCL2 and ENO3 associated to the worst 
outcome.
Conclusion: By artificial intelligence we identified a set of genes with prognostic relevance.
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INTRODUCTION

Diffuse large B-cell lymphoma (DLBCL) is the most 
common histologic subtype of non-Hodgkin lympho-
ma (NHL), accounting for approximately 25 percent 
of NHL cases [1-3]. DLBCL is curable in approximate-
ly half of cases with current therapy, particularly in 
those who achieve a complete remission with first-line 
treatment [3]. 

The diagnostic category of DLBCL is morpho-
logically, genetically, and biologically heterogeneous. 
Several distinct clinicopathologic entities are now 
considered separate diagnostic categories: the 2016 
revised 4th Edition of the World Health Organization 
(WHO) classification of tumours of haematopoietic 
and lymphoid tissues describes several categories such 
as DLBCL not otherwise specified (DLBCL NOS), 
T-cell/histiocyte-rich large B-cell lymphoma, primary 
DLBCL of the central nervous system (CNS), primary 
cutaneous DLBCL (leg type), EBV-positive DLBCL 
NOS, among others [3, 4]. The histological characteris-
tics of those categories show common features such as 
a partial or commonly total architecture effacement by 
a diffuse proliferation of medium or large lymphoid 
cells that express markers of pan-B-cell phenotype 
such as CD19, C20, CD79a and PAX5 [4] but also dis-

tinct features that indicates a different gene expression 
profile. In DLBCL NOS there are several identified 
morphological variants (centroblastic, immunoblastic, 
anaplastic and others) and two molecular subtypes 
based on the gene expression profiling (GEP): germi-
nal centre B-cell subtype (GCB) and activated B-cell 
subtype (ABC), with an additional unclassified subtype 
[4, 5]. The ABC subtype is associated to a worse prog-
nosis [5]. The relative frequencies of the GCB subtype 
is 60% and the ABC is 40%, in Asia the GCB subtype 
is lower [4, 6]. The molecular subtypes require RNA 
from frozen tissue but nowadays it can be performed 
from formalin-fixed, paraffin-embedded (FFPE) mate-
rial using the Lymph2Cx model [7]. In this Lymph2Cx 
model 20 genes contribute to the mathematical algo-
rithm: 8 genes are overexpressed in the ABC subtype 
(TNFRSF13B, LIMD1, IRF4, CREB3L2, PIM2, CYB5R2, 
RAB7L1 and CCDC50), 7 genes are overexpressed in 
the GCB subtype (MME, SERPINA9, ASB13, MAML3, 
ITPKB, MYBL1 and S1PR2) and 5 genes are house-
keeping genes (R3HDM1, WDR55, ISY1, UBXN4 and 
TRIM56). A recent meta-analysis study has stablished 
that the GEP method, but not the immunohistochem-
ical algorithms, remain as the gold standard method 
for prediction of prognosis [7]. Nevertheless, both IRF4 
(MUM1) and MME (CD10) are not only present in the 
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GEP algorithm but also form part of the immunphe-
notype of the Hans’classifier, which is still valid in the 
rituximab era [6]. In addition to the cell of origin, pre-
dictive markers currently include markers of relevant 
oncogene translocations, involving the MYC gene [8]. 
Nevertheless, MYC expression levels by itself does not 
stratify the patients of DLBCL NOS according to the 
prognosis (Carreras et al. Unpublished observations). A 
stromal signature predicted the prognosis of DLBCL [9] 
and recently this signature has been confirmed using 
FFPE tissue samples, identifying genes related to myo-
fibroblasts, dendritic cells and CD4 + T-lymphocytes in 
the good prognostic group [10].

The term neural network applies to a loosely related 
family of models, characterized by a large param-
eter space and flexible structure, descending from 
studies of brain functioning. Neural networks are the 
preferred tool for many predictive data mining appli-
cations because of their power, flexibility, and ease of 
use. Predictive neural networks are particularly useful 
in applications where the underlying process is com-
plex. Among them, the multilayer perceptron (MLP) 
procedure produces a predictive model for one or 
more dependent (target) variables based on the values 
of the predictor variables [11]. 

In the project we aimed to identify new gene 
expression patterns associated to the prognosis of the 
patients in a large series of DLBCL NOS, that were 
not previously identified by more conventional statis-
tical approaches. We used the MLP procedure: our 
target variable was the prognosis of the patients (bad 
vs. good) and the predictor variables were 54,614 gene 
expression probes. We identified a signature of 25 
genes that was highly associated with the prognosis of 
the patients and that was independent from the cell of 
origin molecular subtypes.

MATERIALS AND METHODS

Subjects of study
The subjects of study were from an internationally 

well recognized series of DLBCL NOS [9, 12], the 
GSE10846 gene expression omnibus (GEO) series 
that is comprised of 414 cases. For MLP analysis we 
selected 100 representative cases that constituted the 
discovery set. 

The clinicopathological characteristics of the discov-
ery series is summarized in Table 1 and the features 
were as follows: The male/female ratio was 52/43 
(1.2), the mean age was 62-years (median of 66-years, 
range from 18 to 88, > 60 to 75 in 32% and > 75 in 
22% of the cases), LDH ratio (according to the NCCN-
IPI criteria that is used in this series) of ≤ 1 in 39/82 
(47.6%), > 1 to 3 in 32/82 (39%) and > 3 in 11/82 
(13.4%); ECOG PS ≥ 2 of 32/94 (33%), Ann Arbor 
stage III to IV in 61/99 (61.6%) and > 1 extranodal 
sites in 11/93 (11.8%). All cases were DLBCL NOS 
diagnosed in lymph node biopsies (i.e. nodular cases). 
According to the cell of origin assessed by GEP, the 
molecular subtype was GCB in 34/100 (34%), ABC 
in 49% and unclassified in 17%. The follow up of 
the patients ranged from 0.01 to 16.8 years, with an 
average of 2.6 and median of 1.6 years. At the end of 
the follow up time 53 cases (53%) had died. The 3-year 
OS was 50.4%, the 5-year was 43.5% and the 10-year 
was 26.6%. R-CHOP-like therapy was received by 
52% of the cases and CHOP-like by 48%. According 
to the original IPI, the distribution was as follows: low 
(34.2%), low-intermediate (28.8%), high-intermediate 
(21.9%) and high (15.1%). In comparison to low/
low-intermediate IPI, high-intermediate/high IPI was 
characterized by worse survival: Hazard Risk = 2.881 
(95% CI = 1.5-5.5), P = 0.001. Finally, in comparison 

Table 1	 Clinicopathological characteristics of the discovery set 
of DLBCL used for MLP analysis.

Variable No. %

Male 52/95 54.7

Age > 60-years 54/100 54

LDH ratio > 1 43/82 52.4

ECOG PS ≥ 2 31/94 33

Ann Arbor stage III to IV 61/99 61.6

Extranodal sites > 1 11/93 11.8

IPI

Low 25/73 34.2

Low-intermediate 21/73 28.8

High-intermediate 16/73 21.9

High 11/73 15.1

Molecular subtype

GCB 34/100 34

ABC 49/100 49

Unclassified 17/100 17

Treatment

R-CHOP-Like 52/100 52

CHOP-Like 48/100 48

Overall survival status

Alive 47/100 47

Dead 53/100 53
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to GCB subtype, ABC subtype associated to a worse 
survival: HR = 2.584 (95% CI = 1.4-4.9), P = 0.004. In 
conclusion, the characteristics of this discovery series 
represent a conventional DLBCL series.

This human study had been reviewed by the ethics 
committee of the participating Institutions. Therefore, 
the investigation conforms with the principles outlined 
in the Declaration of Helsinki. All persons had given 
their informed consent prior to their inclusion in the 
study.

Multilayer perceptron analysis
MLP analysis on the discovery series was performed 

using SPSS software following the manufacturer’s 
instructions (IBM® SPSS® Statistics Version 25, IBM, 
New York, United States) on a desktop workstation 
with an AMD Ryzen 5 1600 Six-Core Processor 3.20 
GHz and 16.0 GB of RAM. One hundred cases were 
selected from the DLBCL NOS dataset of GSE10846, 
this discovery set comprised 50 cases associated to poor 
prognosis and 50 to good prognosis. The samples were 
classified into a training group (n = 70) and a testing 
group (n = 30). All cases were valid for processing 
and none was excluded. The network had an input 
layer with 54,614 covariates (number of units) with 
standardized rescaling method for covariates. The 
hidden layer number was 1 (with 12 units) and used 
the hyperbolic tangent activation function. The output 
layer was characterized by 1 dependent variable (status, 
survival outcome of dead vs. alive), 2 units, the soft-
max activation function and the cross-entropy error 
function.

Gene expression analysis
Gene expression analysis was performed as we 

previously described [13, 14] with the data of the series 
GSE10846: the gene expression and clinical features 
datasets were downloaded from the NCBI website, 
the Gene Expression Omnibus (GEO), series matrix 
file that used the GPL570 platform: HG-U133 Plus 2 
(Affymetrix Human Genome U133 Plus 2.0 Array). 
The original (quantile-normalized) data was used. In 
case of duplicated genes an average of all probe sets/
records was performed per sample.

The gene set enrichment analysis (GSEA) was 
performed in the discovery series following the Broad 
Institute software and their instructions [15, 16] as we 
have recently published [13, 14]. The GSEA parameters 
included the gene expression data of the genes previ-
ously highlighted in the MLP and as phenotype the 
status variable (survival outcome of dead vs. alive).

For survival analysis the gene expression data was 
transformed to a prognostic index (also known as risk 
score) to generate the risk groups. Calculation was 
performed by multiplying the gene expression values 
with the estimated beta coefficients from the fitted Cox 
proportional hazards model. After ranking the samples 
by their prognostic index, the samples were split into 
low-risk vs. high-risk groups and low-expression vs. 
high-expression. In addition, the risk group splitting 
was also optimized using an algorithm that uses the 
inner-group p-value in order to identify the best cutoff 
for survival (i.e. lower P value) [17]. Then, conventional 
survival analysis was performed.

Statistical analysis
The analysis was performed in R (http://cran.r-proj 

ect.org) as well as with SPSS software. The criteria for 
overall survival was the conventional. Survival analysis 
was performed with Kaplan-Meier and Log rank tests, 
and Cox regression, method (enter), contrast (indicator) 
and reference category (first). Hazard ratios/risks (HR) 
were calculated with Cox regression. The Odds Ratios 
(OR) with binary logistic regression.

RESULTS

Multilayer perceptron analysis in the discovery 
series

In the discovery series, the samples were distributed 
in two groups: training set (n = 70) and validation set 
(n = 30). The model (Fig. 1-1A) had an acceptable com-
putation, with a cross entropy error and a percentage 
of incorrect predictions for the training set and the 
testing set of 43.2 and 25.7%, and 13.6 and 16.7%, 
respectively. The classification of the samples for the 
dependent variable status (death and alive) was good, 
with a correct percentage between observed and pre-
dicted of 74.3% in the training set and 83.3% in the 
testing set. The sensitivity and specificity were good. 
The ROC analysis had un area under the curve of 0.8 
(Fig. 1-1C).

The normalized importance of the genes in this 
model (Fig. 1-1B) ranged from 1.5% to 100%, with an 
average of 20.6% and a mean of 18.4%. Using a cutoff 
for normalized importance of 70% we identified 26 
genes that were the most relevant as follows: SFTPC 
(100% of normalized importance), ARHGAP19 (87.2%), 
MESDC2 (84.3%), SNN (81.7%), ALDOB (80.7%), 
C9orf9, SWSAP1, C2orf44, ZSCAN12 and DIP2A (77.5%-
75.1%); and ATF6B, CACNA1B, TNFAIP8, RPS23, 
POLR3H, 237096_at, ENO3, RAB7A , SERPINB8, 
SZRD1, EMC9, C10orf76, LPXN, KIF23, GGA3 and 
METTL21A (74.9%-70.3%). The gene name, function 
and involvement in disease for each of the 26 genes (25 
genes as one probe is unmatched) is present in Table 2. 
In summary, these genes had several functions rang-
ing from signal transduction, protein binding, regu-
lation of apoptosis and antigen presentation, among 
others. They were more frequently over-expressed in 
many types of cancer while under-expression was less 
frequent. These markers were not related between 
them when testing with the functional module discov-
ery analysis (Flatiron Institute) or by protein-protein 
interaction analysis (STRING). Of note, an extended 
additional analysis using STRING managed to find 
common pathways.

Gene set enrichment analysis in the discovery se-
ries

The GSEA technique was performed to validate the 
MLP results. GSEA used the same discovery series of 
the MLP. GSEA determined whether the genes that 
were highlighted in the MLP showed statistically sig-
nificant, concordant differences between the patients 
who died and patients who lived (status variable, also 
named as phenotype in GSEA software).

The GSEA with the 25 genes that were the most 
relevant (with more normalized importance) showed 
an enrichment in the phenotype dead. The gene set 
was significant at false discovery rate (FDR) < 25%. 
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The genes in the core enrichment were: ENO3 (1st), 
CACNA1B (2nd) and GGA3 (3rd). To improve to power of 
the analysis (GSEA is sensitive to sets with few genes), 
the GSEA was repeated using the 100 most relevant 
genes (Fig. 1-2D). This set was also upregulated in the 
phenotype dead and significant at FDR <  25%. In the 
core enrichment 20 genes were identified: AKT2 (1st), 
ZNF550 (2nd), ENO3 (3rd), among others.

In summary, by GSEA we confirmed an enrich-
ment, an association of the identified genes of MLP in 
the group of bad prognosis.

Survival analysis in the validation series
The set of 25 genes, previously identified in the 

MLP, were analyzed for prognosis in the validation set 
of 414 DLBCL cases.

By univariate Cox regression analyses we found 
that high expression of ARHGAP19, MESD, C2orf44 
(WDCP), DIP2A, CACNA1B, TNFAIP8, POLR3H, 

ENO3, SERPINB8, SZRD1 (C1orf144), KIF23 and GGA3 
statistically associated to a poor prognosis of the pa-
tients. Conversely, high expression of SFTPC, ZSCAN12, 
LPXN and METTL21A (TAM119A) associated to good 
prognosis (Table 3). In the subsequent multivariate 
analysis, the genes that kept the prognostic relevance 
were MESD, TNFAIP8, POLR3H as bad prognosis and 
ZSCAN12 and LPXN as good prognostic markers (Table 
4).

Using a risk score formula, the survival analysis 
identified two risk groups (high-risk and low-risk) 
with different prognosis and different gene expression 
(Table 5, Fig. 1-2E and 1-2F). Log rank P = 8.741E-14, 
Hazard Ratio = 3.2 (95% CI: 2.3-4.4, P = 1.77E-12). 
Of note, when stratified by the molecular groups, this 
prognosis relevance was kept in each group. Therefore, 
this prognostic marker set is independent of the cell of 
origin classification.

A functional network association analysis was 

Fig. 1-1	 Artificial intelligence analysis of gene expression of DLBCL.
	  A. Network diagram. 
	  This figure shows a simplified version of the network diagram depicting the results for the 25th most rel-

evant genes of the model (the real diagram is comprised of 54,614 covariates). This network has 25 units 
and 1 hidden layer. The output layer has 1 dependent variable with 2 units (dead and alive). The synaptic 
weight lines show the direction of the association. The most relevant markers have a bigger box. The mul-
tilayer perceptron (MLP) analysis was performed in the discovery set of 100 cases.

	  B. Independent variables importance chart. 
	  In the MLP results, the markers (i.e. independent variables, predictors) with a normalized importance 

higher than 70% were selected as the most relevant. Subsequently, these 25 genes were tested for prognos-
tic value by means of GSEA and survival analysis.

	  C. ROC curve. 
	  In the MLP analysis, the Receiver Operating Characteristic (ROC) metric was used to evaluate the classifi-

er output quality. The quality of the multilayer perceptron analysis was acceptable.



―41―

J. CARRERAS et al. / DLBCL Prognosis Artificial Intelligence

performed with the 25 markers as a start point. The 
resulting network (Fig. 1-2G) was characterized by 693 
nodes, 12,082 edges, 34.9 average node degree and 
a PPI enrichment p-value of 1.0e-16. The molecular 
function of the network was structural constituent of 
ribosome, protein binding, RNA polymerase activity, 
transferase activity and enzyme binding. According 
to KEGG pathways, the most relevant were ribosome, 
RNA polymerase, EBV infection, glycolysis and pyrim-
idine metabolism.

Relationship with known pathogenic markers of 
DLBCL

The MLP analysis on the training set was repeated 
merging the set of 25 genes with a set of known 
pathogenic markers of DLBCL: MYC, MIK67, TP53, 

MME (CD10), BCL2, GCET1, MDM2, RGS1, AICDA 
(AID), PRDM1 (BLIMP1), IRF4 (MUM1), LMO2, 
BCL6, CDKN2A and FOXP1 (Fig. 2). The MLP analysis 
ranked the genes according to their normalized impor-
tance for predicting the status of the patients (dead vs. 
alive). In order of importance, the top 10 genes were as 
follows: GGA3, ALDOB, CACNA1B, LPXN, MYC, RPS23, 
MIK67, TP53, MME and ENO3. Subsequently, the same 
merged set was subjected to GSEA analysis to confirm 
the direction of the association. In the GSEA output the 
association towards bad prognosis was confirmed. The 
genes of the core enrichment, in order of relevance, 
were IRF4, ENO3, GGA3, AICDA, MYC, BCL2, MKI67, 
TP53, ALDOB, POLR3H, PRDM1, ERHGAP19, FOXP1 
and KIF23. A multivariate COX regression analysis 
(method: backward conditional) of the genes of the 
core enrichment showed that the most significant genes 

Fig. 1-2	 D. Gene set enrichment analysis. 
	  GSEA was performed on the discovery set using two sets of genes, the 25th and the 100th most relevant 

sets. Both sets show a correlation with the patients that died (phenotype dead).
	  E. Gene expression by Risk Group. 
	  Using a risk score formula, two risk groups (high-risk and low-risk) with different prognosis and different 

gene expression of the 25 markers were found.
	  F. Overall survival according to the Risk Group. 
	  The two Risk Groups had different survival (P < 0.05). Of note, the prognostic value of the Risk Group 

variable was independent of the cell of origin molecular classification.
	  G. Protein-protein functional network association analysis. 
	  Using STRING database, a network analysis was performed. According to the KEGG pathways, the most 

relevant pathways of the network were ribosome, RNA polymerase, EBV infection, glycolysis and pyrimi-
dine metabolism.
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Table 2	 Genes highly associated to DLBCL prognosis.

Num. Gene symbol Normalized Importance Function
1 SFTPC 100.0% Cellular protein metabolic process.
2 ARHGAP19 87.2% Signal transduction.
3 MESD 84.3% Wnt signaling pathway, phagocytosis.
4 SNN 81.7% Response to toxic substance (organotins).
5 ALDOB 80.7% Canonical glycolysis.
6 SPACA9 (C9orf9) 77.5% Calcium-dependent protein binding.
7 SWSAP1 (C19orf39) 77.4% DNA binding, homologous recombination repair.
8 WDCP (C2orf44) 76.9% Kinase binding, protein oligomerization.
9 ZSCAN12 76.1% DNA-binding transcription factor activity.
10 DIP2A 75.1% Negative regulation of gene expression, apoptosis.
11 ATF6B 74.9% Positive regulation of RNA polymerase II
12 CACNA1B 74.5% Calcium ion transport.
13 TNFAIP8 74.4% Negative regulation of apoptosis.
14 RPS23 74.1% Maintenance of translational fidelity.
15 POLR3H 73.7% DNA binding, innate immune response (to virus).
16 237096_at 73.4% N/A.
17 ENO3 73.3% Gluconeogenesis, response to drug.
18 RAB7A 72.4% GTPase activity, MHC II, exosomal secretion.
19 SERPINB8 72.1% Epithelial cell-cell adhesion, serine protease inhibitor.
20 SZRD1 (C1orf144) 72.0% MAPK-activating protein.
21 EMC9 (FAM158A) 71.7% Protein biogenesis.
22 ARMH3 (C10orf76) 71.6% Membrane protein.
23 LPXN 71.6% Cell adhesion and B-cell receptor signaling pathway.
24 KIF23 71.1% Microtubule binding, mitotis, MHC II.
25 GGA3 70.9% Ubiquitin binding and endocytic recycling.
26 METTL21A (FAM119A) 70.3% HSP70 Heat shock protein binding.

These genes were highlighted in the discovery set by MLP analysis (the genes with normalized importance > 70% were selected). The gene data is based on 
HGNC and Uniprot.

Table 3	 Univariate overall survival analysis in the validation set.

N. Gene symbol High/Low expression 
groups [Num. (deaths)]

Log rank P 
value HR 95% CI 

for HR
HR P 
value

1 SFTPC 58 (11) / 356 (154) 0.009 0.45 0.25-0.84 0.011
2 ARHGAP19 267 (119) / 147 (46) 0.042 1.42 1.01-2 0.043
3 MESD 367 (155) / 47 (10) 0.006 2.38 1.26-4.51 0.008
4 SNN 363 (139) / 51 (26) 0.062 0.67 0.44-1.0 0.064
5 ALDOB 89 (27) / 325 (138) 0.106 0.71 0.47-1.1 0.108
6 SPACA9 366 (151) / 48 (14) 0.176 1.46 0.84-2.52 0.179
7 SWSAP1 91 (44) / 323 (121) 0.136 1.3 0.92-1.83 0.138
8 WDCP 52 (32) / 362 (133) 0.00021 2.04 1.39-3.01 0.00029
9 ZSCAN12 164 (42) / 250 (123) 0.00013 0.51 0.36-0.73 0.00018
10 DIP2A 58 (32) / 356 (133) 0.029 1.53 1.04-2.26 0.030
11 ATF6B 309 (112) / 105 (53) 0.103 0.76 0.55-1.06 0.104
12 CACNA1B 44 (25) / 370 (140) 0.003 1.87 1.22-2.87 0.004
13 TNFAIP8 294 (132) / 120 (33) 0.00084 1.9 1.29-2.78 0.001
14 RPS23 186 (79) / 228 (86) 0.080 1.31 0.97-1.79 0.085
15 POLR3H 243 (119) / 171 (46) 0.00024 1.88 1.33-2.64 0.00031
16 237096_at N/A N/A N/A N/A N/A
17 ENO3 65 (43) / 349 (122) 0.000005 2.21 1.56-3.13 0.00001
18 RAB7A 82 (42) / 332 (123) 0.100 1.34 0.94-1.9 0.101
19 SERPINB8 279 (130) / 135 (35) 0.004212 1.72 1.18-2.5 0.005
20 SZRD1 113 (68) / 301 (95) 0.00008 1.86 1.36-2.54 0.00011
21 EMC9 51 (15) / 363 (150) 0.094 0.64 0.37-1.09 0.097
22 ARMH3 48 (22) / 366 (143) 0.209 1.33 0.85-2.09 0.211
23 LPXN 243 (81) / 171 (84) 0.00016 0.56 0.41-0.76 0.00019
24 KIF23 105 (51) / 309 (114) 0.033 1.43 1.03-1.99 0.034
25 GGA3 165 (105) / 249 (70) 0.00007 1.87 1.37-2.57 0.00009
26 METTL21A 166 (48) / 248 (117) 0.010 0.65 0.46-0.91 0.011

Kaplan-Meier and Log rank tests. P < 0.05 are highlighted in bold. P < 0.001 are underlined. N/A, non-assessable. Statistically significant hazard ratios/risks 
(HR) are also in bold. HR was calculated with a univariate Cox regression analysis. HR was calculated with low expression group as reference. Only the sig-
nificant genes (n = 16) were selected for the multivariate Cox regression analysis
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Table 5	 Different gene expression by the two Risk Groups.

N. Gene symbol Fisher's Test OR 95% CI for OR OR P value

1 SFTPC 0.062 2.37 0.51-10.93 0.270

2 ARHGAP19 0.021 0.29 0.11-0.81 0.018

3 MESD 0.002 44.42 3.72-530.23 0.003

4 SNN 0.028 0.57 0.18-1.78 0.333

5 ALDOB 0.113 0.34 0.10-1.08 0.068

6 SPACA9 0.689 0.29 0.09-0.97 0.044

7 SWSAP1 0.029 2.82 1.06-7.49 0.038

8 WDCP 0.00000017 5.33 1.69-16.83 0.004

9 ZSCAN12 0.00000006 0.12 0.04-0.37 0.0002

10 DIP2A 0.189 1.13 0.38-3.32 0.830

11 ATF6B 0.456 2.04 0.82-5.07 0.123

12 CACNA1B 0.0004 11.51 3.17-41.77 0.0002

13 TNFAIP8 0.00002800 26.61 7.36-96.16 0.000001

14 RPS23 0.516 2.74 1.13-6.68 0.026

15 POLR3H 0.00000034 8.61 2.72-27.24 0.0002

16 237096_at N/A - - -

17 ENO3 0.00000034 1.50 0.55-4.10 0.428

18 RAB7A 0.416 0.80 0.31-2.08 0.648

19 SERPINB8 0.00000032 4.46 1.38-14.43 0.013

20 SZRD1 0.00000013 0.90 0.32-2.52 0.843

21 EMC9 0.167 0.70 0.18-2.75 0.608

22 ARMH3 0.069 0.39 0.12-1.24 0.109

23 LPXN 0.0001 0.22 0.09-0.53 0.001

24 KIF23 0.0001 5.27 2.14-13.00 0.0003

25 GGA3 0.0000000003 1.84 0.60-5.63 0.285

26 METTL21A 0.0002 0.14 0.04-0.45 0.001

The data is based on the risk score formula. Fisher’s exact test is calculated from the crosstabulation (high/low-risk vs. high/low 
gene expression). Odds-ratio (OR) are calculated with binary logistic regression. P values < 0.05 are highlighted in bold.

Table 4	 Multivariate overall survival analysis in validation set.

N. Gene symbol P value for HR HR 95.0% CI for HR

1 SFTPC 0.187 0.644 0.34-1.24

2 ARHGAP19 0.999 1 0.68-1.47

3 MESD 0.015 2.263 1.17-4.36

8 WDCP 0.208 1.335 0.85-2.09

9 ZSCAN12 0.024 0.645 0.44-0.94

10 DIP2A 0.939 1.017 0.66-1.57

12 CACNA1B 0.086 1.526 0.94-2.47

13 TNFAIP8 0.001 1.986 1.33-2.97

15 POLR3H 0.026 1.586 1.06-2.38

17 ENO3 0.251 1.277 0.84-1.94

19 SERPINB8 0.776 1.063 0.70-1.62

20 SZRD1 0.434 1.172 0.79-1.74

23 LPXN 0.003 0.614 0.44-0.85

24 KIF23 0.325 1.199 0.84-1.72

25 GGA3 0.727 0.921 0.58-1.46

26 METTL21A 0.187 0.77 0.52-1.14

N., gene number. Cox regression analysis, method:enter; low expression as reference. Significant P values and 
their hazard ratio/risk (HR) are in bold.
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Fig. 2-1	 Artificial Intelligence-based reanalysis of the 25 newly identified genes with already 
known DLBCL biomarkers in the discovery set.

  A. Network diagram. 
  This figure shows the network diagram of the multilayer perceptron (MLP) analysis. 

This analysis aimed to predict the patients’ outcome (dead vs. alive; i.e. dependent 
variable) with a set of co-variables that were the 25th most relevant genes of the previ-
ous model (Fig. 1) added to a 15 already known pathogenic markers of DLBCL such 
as MYC, BCL2, BCL6, FOXP1, etc. The synaptic weight lines show the direction of 
the association. The most relevant markers have a bigger box. The MLP analysis was 
performed in the discovery set of 100 cases.

  B. Independent variables importance chart.
  In the MLP results, the markers (i.e. independent variables, predictors) are ranked 

according to their normalized importance for predicting the prognosis of the patients. 
The most relevant genes were GGA3, ALDOB, CACNA1B, LPXN, MYC, RPS23, MIK67 
and TP53. Subsequently, all the set of 41 genes was tested for prognostic value by 
GSEA and survival analysis.

  C. ROC curve. 
  In the MLP analysis, the Receiver Operating Characteristic (ROC) metric was used to 

evaluate the classifier output quality. The quality of the multilayer perceptron analysis 
was good and with a large area under the curve.
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were ENO3, MYC and BCL2. Finally, survival analysis 
with log-rank test showed that the group of patients 
with high expression of those 3 genes (the “triple High 
group”) associated to a marked unfavorable prognosis 
than the intermediate and triple low expression groups 
(Fig. 2). The function of these genes was also analyzed 
using a functional network association analysis (Fig. 3).

DISCUSSION

Neural networks are a computer architecture, imple-
mentable in either hardware or software, modeled after 
biological neural networks. Like the biological system 
in which the processing capability is a result of the 
interconnection strengths between arrays of nonlinear 

processing nodes, computerized neural networks, often 
called perceptrons or multilayer connectionist models, 
consist of neuron-like units. A homogeneous group of 
units makes up a layer. In this project we used a mul-
tilayer perceptron approach and our hidden layer had 
12 units [18]. 

These networks are good at pattern recognition. 
They are adaptive, performing tasks by example, and 
thus are better for decision-making than are linear 
learning machines or cluster analysis. Importantly, 
neural networks do not require explicit programming 
[18] and, therefore, can be applied easily in many 
experimental situations. In this research project we 
aimed to identify prognostic markers in DLBCL using 

Fig. 2-2	 D. Gene set enrichment analysis. 
  GSEA was performed on the set of 41 genes. A correlation with the patients that 

died (phenotype dead) was found: the genes of the core enrichment were, in order of 
relevance, IRF4, ENO3, GGA3, AICDA, MYC, BCL2, MKI67, TP53, ALDOB, POLR3H, 
PRDM1, ERHGAP19, FOXP1 and KIF23.

  F. Overall survival according the genes of the Core Enrichment genes of the GSEA 
analysis. 

  Using the Visual Binning tool of SPSS, the contiguous gene expression values were 
grouped into 2 limited distinct categories, low and high expression. Multivariate COX 
regression analysis was performed with the genes of the Core Enrichment of the 
GSEA analysis. The COX method that was used was the backward conditional. In the 
last step (the 11th) only three genes had independent predictive value (P < 0.05): ENO3 
(Hazard Risk = 2.1), MYC (HR = 2.3) and BCL2 (2.0). High expression of these three 
genes independently associated to poor prognosis of the patients. Finally, based on 
the expression of these 3 genes, a survival analysis with log-rank test showed that the 
triple high group was associated with the worse prognosis while the triple low had a 
favorable outcome (P = 9.5E-8). Of note, all techniques of MLP, GSEA and survival 
analysis presented in this Fig. 2 were performed in the discovery set.
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an alternative approach, which will consequently pro-
vide alterative and/or unexpected results. We created 
a multilayer perceptron (MLP) analysis in a discovery 
series of 100 cases of gene expression data. The gene 
expression data had been obtained from a GeneChipTM 
Human Genome U133 Plus 2.0 array which was the 
first and most comprehensive whole human genome 
expression array (i.e. transcriptome profiling). This 
array completes the coverage of the Human Genome 
U133 set with an additional 6,500 genes for analysis 
of over 47,000 transcripts. The series of 100 cases 
(discovery set) was selected from a larger series of 414 
cases (the validation set), which is the well-recognized 
international DLBCL NOS series of GSE10846. The 
clinicopathological characteristics of the discovery 
set were the standard and are present in the Table 
1. Therefore, we expected to find useful results that 
would be subsequently tested in the validation set. The 
neural network of MLP was comprised of a training 
group of 70 cases and a testing group of 30 cases. 
The network had an input layer of 54,614 covariates 
(i.e. the gene-probes), and the output layer was the de-
pendent variable, the survival outcome as dead versus 
alive. Technically, the MPL had an acceptable compu-
tation. Therefore, we were confident that the model 
would provide interesting results. The MLP provided a 

rank of all the gene-probes with a value of normalized 
importance. Using a cutoff of 70% we selected the 
most statistically relevant genes for prognosis, a total of 
25 genes. Then, we validated the prognostic relevance 
of these 25 genes in the same discovery series using 
another statistical technique, to confirm that the MLP 
had provided comparable results and to corroborate 
the direction of the association (bad vs. good progno-
sis). We performed GSEA and we found that most of 
the genes were associated to a poor prognosis. Next, 
we checked the prognostic relevance of those 25 genes 
in the complete series of 414 cases (validation set) to 
have the maximum statistical power. Using a survival 
univariate Cox regression analysis we found signif-
icant results for 16 genes: high ARHGAP19, MESD, 
WDCP, DIP2A, CACNA1B, TNFAIP8, POLR3H, ENO3, 
SERPINB8, SZRD1, KIF23 and GGA3 associated to 
poor prognosis; and high SFTPC, ZSCAN12, LPXN 
and METTL21A associated to a good prognosis of the 
patients. A multivariate analysis confirmed MESD, 
TNFAIP8 and ENO3 as risk factors and ZSCAN12 and 
LPXN as protective factors. 

The complete name, the biological function, the 
chromosomal location and the normalized importance 
value of each of the identified genes is recorded in 
the Table 2. Alterations of some of these genes are 

Fig. 3	 Protein-protein functional network association analysis of the genes of the Core Enrichment of the GSEA 
analysis of Fig. 2. 

	 Using the STRING database, a network analysis was performed with the genes of the Core Enrichment of 
the GSEA analysis. These genes associated to poor prognosis of the patients. The color of the lines of the 
network show the action types including activation, binding, inhibition, etc. The tip of the line indicates the 
action effects (positive, negative and unspecified). The network sows that the function of ENO3 is indepen-
dent (or no closely pathway-related) to the other two more relevant markers of MYC and BCL2.
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directly associated to disease [19]: RAB7A to type 2B 
Charcot-Marie-Tooth disease (OMIM disease), ALDOB 
to fructose intolerance, CACNA1B to dystonia 23, ENO3 
to glycogen storage disease XIII and SFTPC to type 2 
pulmonary surfactant metabolism dysfunction. A func-
tional annotation analysis associates these genes with 
GOTERM of protein binding, acetylation, glycolysis, 
regulation of catabolic process and antigen presenta-
tion. Using the STRING database [20], which contains 
known and predicted protein-protein association data, 
we find that most of the genes at protein level are 
independent between them except for the interaction 
between KIF23 and MESD (unspecified reaction type), 
and ENO3 and ALDOB (binding). Using the func-
tional module discovery of HumanBase of Flatiron 
Institute, which is a network-based functional interpre-
tation method of genes and gene sets, when focusing 
on the lymphocyte network an association is found 
between METTL21A, SERPINB8, SNN and TNFAIP8 as 
a functional module of negative regulation of proteoly-
sis. Pubmed search between the 25 gene names and the 
terms of “diffuse large b-cell lymphoma”, “lymphoma” 
and “lymphocyte” does not provide significant match-
es. Therefore, the markers that we have identified seem 
to be novel in the understanding of pathogenesis of 
lymphoma.

 Nevertheless, some information is available. 
ARHGAP19 is a signal transductor located in the 
nucleus that has GTPase activator activity. ARHGAP19 
is predominantly expressed in hematopoietic cells and 
has an essential role in the division of T lymphocytes. 
Overexpression of ARHGAP19 in lymphocytes delays 
cell elongation and cytokinesis [21]. MESD is a chaper-
one that acts as a modulator of the Wnt pathway and 
may regulate phagocytosis of apoptotic cells. MESD 
is a universal inhibitor of Wnt coreceptors LRP5 
and LRP6 and blocks Wnt/beta-catenin signaling in 
cancer cells [22]. WDCP has kinase binding activity 
and participates in the process of protein complex 
oligomerization. A chromosomal aberration involving 
WDCP was found in one subject with colorectal 
cancer [23]. It also has a role in lymphoid neoplasia: 
WDCP is a novel fusion partner for the anaplastic 
lymphoma tyrosine kinase ALK [24]. DIP2A is a 
negative regulator of gene expression and a regulator 
of apoptotic process. In non-small cell lung cancer 
(NSCLC), FSTL1/DIP2A co-positivity correlates with 
poor prognosis and blocking the FSTL1-DIP2A axis 
improves anti-tumor immunity [25]. CACNA1B has 
ATP binding function and calcium ion binding. In 
NSCLC overexpression CACNA1B correlates with 
unfavorable prognosis [26]. TNFAIP8 acts as a neg-
ative mediation of apoptosis and may play a role in 
tumor progression. Polymorphisms are related to the 
risk of non-Hodgkin’s lymphoma [27] and it has been 
previously identified in DLBCL [28]. POLR3H acts as 
nuclear and cytosolic DNA sensor involved in innate 
immune response. There is no reported evidence of its 
role in cancer. ENO3 is involved in glycolysis. In child-
hood acute lymphoblastic leukemia, it has been related 
to the prognosis of the patients [29]. SERPINB8 has 
a role in cell-cell adhesion. It is a novel immunohis-
tochemical marker for neuroendocrine tumors of the 
pancreas [30]. SZRD1 belongs to the MAPK pathway. 
It is a novel protein that functions as a potential tumor 

suppressor in cervical cancer [31]. KIF23 has a role 
in the mitotic cytokinesis and promotes gastric cancer 
by stimulating cell proliferation [32]. GGA3 has a 
role in endocytic recycling and protein localization. It 
has a been associated to cell invasion and metastasis 
of breast cancer [33]. SFTPC is a component of the 
pulmonary surfactant. Its downregulation promotes 
cell proliferation and predicts poor survival in lung 
adenocarcinoma [34]. ZSCAN12 may be involved in 
transcriptional regulation and it is related to prostate 
cancer [35]. LPXN regulates cell adhesion, cell migra-
tion and negatively regulates B-cell antigen receptor 
signaling. It is expressed in mammary carcinoma [36]. 
Finally, METTL21A has ATPase binding activity but it 
is not reported to be associated in cancer.

In DLBCL there are a series of biomarkers with 
pathogenic relevance. We revised the scientific litera-
ture and we selected the following genes: AICDA (AID), 
BCL2, BCL6, CDKN2A, FOXP1, GCET1, IRF4 (MUM1), 
LMO2, MDM2, MIK67, MME (CD10), MYC, PRDM1 
(BLIMP1), RGS1 and TP53. These markers form part 
of the algorithms of the cell-of-origin classification 
(either the Hans’ or the Choi’s classifiers) and are also 
related to the regulation of the cell cycle, apoptosis, 
germinal center function or plasma cell differentia-
tion [2]. We added this list to the 25 genes previously 
identified by MLP and we performed MLP, GSEA 
and multivariate survival analysis. All the results in 
a simplified manner are present in the Fig. 2 and 
3. In summary, we found that the group with high 
expression of MYC, BCL2 and ENO3 associated to poor 
prognosis. Therefore, ENO3 could be included in the 
panel in routine diagnosis of DLBCL in the future.

In conclusion, using a deep learning approach we 
have identified a set of 25 genes associated to the prog-
nosis of DLBCL, and we have validated their main 
association to poor prognosis using other techniques 
such as GSEA, conventional univariate and multi-
variate survival analysis and a risk score formula ap-
proach. To our knowledge, despite that these markers 
are related to cancer, they are new in the pathological 
understanding of lymphoma. The prognostic value 
was independent of the cell-of-origin classification. 
Therefore, we have identified a set of novel biomarkers 
related to the prognosis of DLBCL with independence 
of the molecular subtype classification.
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